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Abstract

We study strategic communication when the sender can influence the re-

ceiver’s understanding of messages’equilibrium meaning. We focus on a “pure

persuasion” setting, in which the informed sender wants the uninformed re-

ceiver to always choose “accept”. The sender’s strategy maps each state of

Nature to a distribution over pairs consisting of: (i) a multi-dimensional mes-

sage, and (ii) a “dictionary”that credibly discloses the state-dependent distri-

bution of some of the messsage’s components. The receiver does not know the

sender’s strategy by default; he can only interpret message components that

are covered by the dictionary he is provided with. We characterize the sender’s

optimal persuasion strategy and show that full persuasion is possible when the

prior on the acceptance state exceeds a threshold that quickly decreases with

message dimensionality. We extend our analysis to situations where interpre-

tation of messages is done by a third party with uncertain preferences, and

explore alternative notions of “dictionaries”.
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1 Introduction

In the simplest textbook model of strategic communication, originated by Crawford

and Sobel (1982), a “sender” privately observes a state of Nature and chooses a

costless message from some given message space. Another agent, referred to as

the “receiver”, observes the message and takes an action that affects both parties’

payoffs. The situation is thus modeled as a two-stage game with one-sided incomplete

information.

A hallmark of this conventional approach is that messages have no intrinsic mean-

ing. Their content - namely, the inference the receiver draws from them - is estab-

lished in Nash equilibrium. Under the standard steady-state interpretation of this

solution concept, the receiver has access to a rich dataset that fully reveals the true

statistical relation between states and messages. As a result, the receiver knows the

meaning of the sender’s equilibrium messages and does not need anyone to inter-

pret them for him. (Interpreting out-of-equilibrium messages requires other modes

of inference, captured by refinements of Nash equilibrium.)

In this paper we revisit the basic sender-receiver model of strategic communica-

tion and depart from the assumption that the receiver is fully capable of interpreting

equilibriummessages. We focus on a pure persuasion setting (as in Glazer and Rubin-

stein (2004, 2006) or Kamenica and Gentzkow (2011)): the receiver has two available

actions, “accept”and “reject”; the sender wants the receiver to accept regardless of

the state, whereas the receiver wants to accept only in the “acceptance state”(the

prior probability of which is π < 1/2). By default, the receiver lacks access to any

data that would shed light on the relation between states and messages. Therefore,

he cannot decipher messages by himself; he is like a tourist in a foreign country who

does not understand the local language or cultural codes. However, if someone came

along and handed the receiver a “dictionary” containing some data regarding the

statistical steady-state mapping between states and messages, he would have some

ability to interpret the message he encounters.

The model we construct thus extends the basic sender-receiver model by making

room for the supply of “dictionaries”that provide partial interpretation of equilib-
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rium messages. A key feature of our model is that interpretations are strategic. The

sender himself, or a third party whose preferences may be aligned with the sender’s,

chooses a dictionary from some feasible set - each credibly providing some statistical

data regarding the equilibrium state-message mapping. Given a realized message-

dictionary pair, the receiver updates his beliefs regarding the state given the message.

The receiver’s inferences are purely based on the data in the dictionary; he has no

other means for extracting the meaning of messages. In addition, the receiver can-

not draw inferences from the dictionary itself - i.e., he has no means of updating

his beliefs just from the mere fact that he received a particular dataset out of the

possible datasets he could have received (unless he also receives data on the statisti-

cal steady-state mapping between states and dictionaries, which is an extension we

discuss in Section 5.2).

For a concrete example of the kind of situations that motivate our model, consider

an employee who is up for promotion and wants to exert effort only when suffi ciently

confident that he will be promoted. The employee is summoned to the General Man-

ager’s offi ce to hear about his prospects at the company. After the meeting is over,

the Human Resources manager (who was present at the meeting) explains that when

the General Manager says to an employee that “he has a future in the company”,

this means a 50% chance of getting a promotion. This amounts to an interpretation

of the General Manager’s verbal message. Yet the HR manager could ignore the

General Manager’s verbal message altogether and only interpret his body language:

“The GM’s handshake was feeble; this is definitely bad news”. Alternatively, suppose

the sender is a political party and the receiver is a representative voter. The party’s

message is multi-dimensional: each component describes public pronouncements by

a different party member. The party’s message is interpreted by a media outlet that

provides historical data about the match between pronouncements by selected party

members and the underlying reality.

In these examples, interpretation is selective because it focuses on particular

aspects of the sender’s multi-dimensional message; and it is strategic because the

interpreter’s interests are not necessarily aligned with the receiver’s. One could ar-

gue that in both examples, the statistical data the interpreter provides need not be
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perfectly credible or unbiased. We abstract from these considerations; our analytical

task is to quantify the effect of strategically selective interpretations on the persua-

sion problem, assuming the statistical data that these interpretations involved are

accurate. We study the problem under various specifications of the notion of a dic-

tionary and show that strategic interpretations greatly enhance the sender’s ability

to persuade the receiver.

Preview of the analysis

In Sections 2-4, we present and analyze a model in which a dictionary is defined as a

selection of the components of a K-dimensional message. The dictionary interprets

these components by disclosing their joint distribution conditional on the state. We

show that when the sender himself (or a proxy with fully aligned interests) interprets

messages, he can attain full persuasion (i.e. the receiver chooses “accept” with

probability one), as long as π is above a cutoff π∗(K) that is given by a simple

formula. Moreover, this cutoff quickly drops towards zero as K grows larger. Note

that full persuasion means that it does not matter whether the sender is able to fully

commit to a communication strategy. When the interpreter’s preferences are not

fully aligned with the sender’s, or when π < π∗(K), full persuasion is not possible.

In this case, we characterize the maximal probability of persuasion and describe how

key features of the sender’s strategy vary with π and the interpreter’s preferences.

In Section 5 we examine alternative notions of dictionaries, which allow the sender

(or his proxy interpreter) to provide data about other slices of the joint equilibrium

distribution over states, messages and dictionaries. For illustration, suppose that

every messagem consists of two components,m1 andm2. The interpreter can provide

data about how the individual variables m1 and m2 are distributed conditional on

the state of Nature, without disclosing data about the joint conditional distribution

of m1 and m2. Alternatively, the interpreter can provide data about the marginal

distribution of m1 (without disclosing how it depends on the state), as well as data

about the conditional distribution ofm2 givenm1 and the state. Finally, the sender’s

dictionary can also provide data about the distribution of dictionaries conditional

on the state. Such data enables the receiver to draw partial inferences from the type

of dictionary he is equipped with.
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In all these cases, we need to define how the receiver extrapolates a subjective

belief from the marginal and conditional distributions that the sender’s dictionary

discloses. Following Spiegler (2018), we employ the maximum entropy principle -

that is, the receiver’s (unconditional) subjective belief maximizes (Shannon) entropy

subject to the data he receives. This generalization subsumes the basic model of

Section 2 as a special case and extends the motivating idea behind it - namely, that

the receiver does not infer correlations beyond what his data tells him. We examine,

via a series of examples, whether these more elaborate notions of dictionaries enable

the sender to outperform the result in Section 3.

Finally, in Section 6 we present and analyze an alternative model of “non-Bayesian”

persuasion (suggested to us by Xiaosheng Mu) that is formally related to our basic

model. In this model, the sender’s strategy induces a non-partitional information

structure for the receiver, whose inferences are naive and violate the standard intro-

spection axioms that characterize partitional information structures.

2 A Model

There are two players, a sender and a receive. The sender observes a state of nature

θ ∈ Θ = {Y,N}. The receiver does not observe the state but needs to take an action
a, which can be either “yes”or “no”. With slight abuse of notation, we denote these

actions by Y and N , respectively. The two players’payoffs take the values 0 and 1.

The sender’s payoff is 1 if and only if a = Y , while the receiver’s payoff is 1 if and

only if a = θ. That is, the sender would like the receiver to choose Y in any state,

whereas the receiver wants to choose Y if only if θ = Y .

The players’common prior belief over Θ assigns probability π < 1
2
to state Y .

Hence, in the absence of any further information, the receiver’s optimal action is

N . To persuade the receiver to choose Y with some probability, the sender must

convey some information about the state. He does so by committing to a strategy

that maps each state to a distribution over reports, where a report is a pair (m,D)

such that (i) m = (m1, ...,mK) ∈ {0, 1}K is a K-dimensional message with K ≥ 1,

and (ii) D ∈ 2{1,...,K} is a dictionary. Hence, the sender’s strategy is a function

5



σ : Θ → ∆
(
{0, 1}K × 2{1,...,K}

)
. Since the receiver only has two available actions,

the assumption that states and message components are binary is without loss of

generality and is made for notational simplicity. The probability with which the

sender plays the report (m,D) in state θ is denoted σ(m,D | θ). With slight abuse
of notation, define σ(m | θ) =

∑
D σ(m,D | θ).

Multi-dimensionality of messages has several interpretations. First, different com-

ponents ofmmay represent different communication modes: verbal statements, body

language, voice intonation, etc. When the sender represents an organization, different

message components can represent utterances made by different organs (party mem-

bers, corporate executives, spokepersons). Alternatively, we can relax the binary-

state assumption (which entails no loss of generality, as mentioned above) and allow

the state itself to have multiple dimensions, such that each message component cor-

responds to a different dimension of the state.

The role of dictionaries is to grant the receiver “partial access” to the statis-

tical regularities inherent in the sender’s strategy. Specifically, when the receiver

observes the report (m,D), he learns the collection of conditional distributions

{σ(mD | θ)}θ∈Θ, where mD = (mk)k∈D and

σ(mD | θ) =
∑

m′|m′D=mD

σ(m′ | θ)

That is, the receiver learns how the message components in D - and nothing but them

- are distributed conditional on the state. He cannot make sense of any other aspect

of the report - i.e., the message components m{1,...,K}−D and the dictionary D itself.

Consequently, when D 6= ∅, the receiver arrives at the following updated belief that
the state belongs to Y :

∼
Pr(θ = Y | m,D) =

π · σ(mD | θ = Y )

π · σ(mD | θ = Y ) + (1− π) · σ(mD | θ = N)
(1)

If D = ∅, then the receiver cannot interpret the sender’s report and therefore assigns
his prior belief π to state Y . Compare this definition of the receiver’s subjective

belief with the correct, rational-expectations posterior probability of Y conditional
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on (m,D):

Pr(θ = Y | m,D) =
π · σ(m,D | θ = Y )

π · σ(m,D | θ = Y ) + (1− π) · σ(m,D | θ = N)
(2)

Note that providing the full dictionary D∗ = {1, ..., K} does not automatically
endow the receiver with rational expectations because such a dictionary does not

interpret itself ; it enables the receiver to draw correct inferences from m, but not

from the entire report (m,D). Note also that the distribution over the receiver’s

posterior
∼
Pr(θ = Y | m,D) need not satisfy Bayes plausibility.

The receiver best-replies to this subjective posterior belief. Equivalently, faced

with a report (m,D), he computes its subjective likelihood ratio

ρσ(m,D) =

∑
m′|m′D=mD

σ(m′ | θ = Y )∑
m′|m′D=mD

σ(m′ | θ = N)
(3)

and chooses a = Y if and only if ρσ(m,D) ≥ (1− π)/π.

Discussion: The interpretation of interpretations

The notion of a dictionary in our model formalizes the idea that the receiver has

an imperfect understanding of the sender’s strategy, which limits his ability to draw

inferences from messages; and moreover, that this imperfect understanding is en-

dogenously determined.

Under the steady-state view of equilibrium behavior, the sender’s strategy σ

describes a long-run statistical relation between states and messages. The receiver

moves once, against the background of a large dataset consisting of many realizations

of (θ,m1, ...,mK , D), resulting from previous interactions between the sender (or

different senders having identical objectives) with different receivers. The dataset

can be visualized as a large spreadsheet, where each column represents one of the

variables and each row represents an observation (an independent draw from the joint

distribution over states and reports). Rational expectations correspond to having

full access to this dataset. Our model relaxes this assumption and assumes that the

receiver is granted access to a subset of columns. The receiver can only rely on the
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accessed data for drawing inferences.

Given that we model the situation as a two-player game, a literal interpretation

of our model would be that the sender himself interprets his own messages. For

example, a General Manager may communicate to an employee that “he has a future

in this company”and then add “in the past, when I used this term, that meant a

50% chance of getting a promotion”and provide numerous verifiable examples that

substantiate this claim. Similarly, a political candidate campaigning for offi ce may

call to “drain the swamp”, and then list the bills for government cuts that he initiated

or voted for.

Our preferred interpretation is that the two-player model is a reduced form of a

larger model in which interpretation is done by a third party whose preferences are

aligned with the sender’s: an accomplice, a spokesperson or a captured media outlet.

In reality, such third parties provide selective data that illuminate the meaning of

utterances by the agent they serve.1 The data are quantitative and verifiable, and

therefore it is reasonable to assume they are relatively credible - unlike the messages

themselves, which are pure “cheap talk”.

We could turn the interpreter into an actual third player, producing the following

timeline. The sender moves first by choosing a strategy that maps each θ to a

distribution over m. The interpreter moves after observing m, and chooses D; unlike

the receiver, he has rational expectations. The conditional distribution σ over pairs

(m,D) is induced by the sender’s and interpreter’s strategies. The receiver moves

last, having observed the history (m,D), and he best-replies to the belief (1). If the

sender and the interpreter have common interests, the situation can be reduced to

our two-player formulation, once our notion of equilibrium is appropriately extended

to the three-player interaction. The difference is that the three-player model requires

σ to satisfy the conditional-independence property D ⊥ θ | m. In Section 3 we will
see there is no loss of generality in imposing this property directly on the two-player

model, rendering its equivalence to the three-player formulation exact.

1The influence of biased media on voters’ behavior is discussed in Prat (2018), who argues
that media owners with political motives may use their outlets to back their preferred candidates.
Strategic interpretation by news commentators can serve this goal.
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3 The Basic Result

We begin this section by analyzing our model under rational expectations.2 In this

case, the probability of persuasion is maximized by the following strategy: In state Y

send the message (1, ..., 1) with probability one, and in state N randomize by sending

the message (1, ..., 1) with probability π/(1 − π) and the message (0, ..., 0) with the

complementary probability. When the receiver gets the message (0, ..., 0), he infers

that θ = N for sure and takes the action N . When he receives the message (1, ..., 1),

his posterior belief that θ = Y is

Pr(θ = Y | m = (1, ..., 1)) =
π · 1

π · 1 + (1− π) · π
1−π

=
1

2

such that he is just willing to play Y . Consequently, the overall probability of

persuasion is

π + (1− π) · π

1− π = 2π

This result crucially relies on the sender’s ability to commit to a strategy ex-ante.

Without the ability to commit, the probability of persuasion would be zero in any

Nash equilibrium.

The following example demonstrates that in contrast to the rational-expectations

benchmark, our model enables full persuasion as an equilibrium outcome.

An example: Full persuasion under K = 2

Consider the following sender strategy. In the state Y , he randomizes uniformly

between the reports ((1, 1), {1}) and ((1, 1), {2}) - i.e., he sends the message (1, 1)

with probability one and interprets a random component. In the state n, the sender

randomizes uniformly between the reports ((1, 0), {1}) and ((0, 1), {2}).
Following every report (m, {k}) that is played with positive probability under the

sender’s strategy, the receiver’s posterior belief, P̃r(θ = Y | m, {k}), is equal to

π · σ(mk = 1 | θ = Y )

π · σ(mk = 1 | θ = Y ) + (1− π) · σ(mk = 1 | θ = N)
=

π · 1
π · 1 + (1− π) · 1

2

2This reduces the model to Kamenica and Gentzkow’s (2011) “prosecutor”example.
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Therefore, the receiver weakly prefers playing Y after each of these four reports

whenever π ≥ 1
3
.

The example illustrates the following key points. First, since the sender achieves

full persuasion, his strategy would also constitute an equilibrium in the absence of

commitment. The reason is that the receiver plays Y after any realized report, hence

the sender has no incentive to deviate from any realization of his strategy. This is in

sharp contrast to the rational-expectations benchmark.

Second, the receiver lacks rational expectations: his beliefs are determined by the

strategically chosen dictionaries. Therefore, when he receives the report ((0, 1), {2})
he cannot draw and inference from the message’s first component. It is as if the sender

sends the receiver a muted video clip with no captions or an illustrated instruction

manual in a foreign language - in both cases the receiver can only interpret the visuals.

The example raises the question of how large should dictionaries be when K > 2,

or how many components is it optimal to interpret? Theorem 1 below answers this

question.

Third, even if the receiver could draw inferences from the realized dictionary itself

(i.e., the sender’s decision not to interpret a particular message component), there

would be no rational basis for that because according to the sender’s strategy, the

distribution over D is the same in both states - i.e., D is independent of θ.

Finally, note that a receiver with rational expectations would not need to draw

any inferences from the dictionary itself, becauseD is independent of θ conditional on

m. Thus, such a receiver would be able to restrict attention to m; the realization of

D does not reveal any additional information about the state. The following lemma

establishes that this property entails no loss of generality.

Lemma 1 Without loss of generality, we can assume that the sender’s strategy sat-
isfies the property D ⊥ θ | m.

Proof. Suppose that σ violates this property. Let p be the joint distribution over
θ,m,D induced by the prior over θ and σ. Consider a deviation to a strategy σ′,

defined as follows. For every θ,m: σ′(m | θ) = σ(m | θ) and σ′(D | θ,m) = p(D | m).
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The new strategy induces the same joint distributions over (θ,m) and (m,D) as σ,

and yet it satisfies D ⊥ θ | m. Because the receiver’s subjective likelihood ratio of
any report (m,D) is only a function of the distribution over (θ,m), the receiver’s

strategy remains unchanged after the deviation. And since the distribution over

(m,D) remains unchanged, the ex-ante distribution over the receiver’s action does

not change, which means that the overall probability of persuasion is unchanged.

This lemma serves two roles. First, it substantiates the three-player interpretation

of our model (described at the end of Section 2), since a distinct interpreter would

only be able to condition D on m. Second, the extended model in Section 4 will

impose the conditional-independence property as an assumption from the outset,

hence it is useful to know that it is without loss of generality in the basic model of

Section 2.

We are now ready to state the main result of this section. The result makes use

of the following notation, which will also prove useful in later sections:

S =

(
K

bK/2c

)
B∗ =

{
(m,D) |

∑
k

mk =

⌊
K

2

⌋
; D = {k | mk = 1}

}

Note that |B∗| = S. We do not provide the proof here because it is a special case of

the results we prove in Section 4.

Theorem 1 The maximal probability of persuasion is min{1, π(1 + S)}. It can be
implemented by the following strategy:

σ((1, . . . , 1), D | θ = Y ) =
1

S
for every D for which |D| =

⌊
K

2

⌋
σ(m,D | θ = N) = min{ 1

S
,

π

1− π} for every (m,D) ∈ B∗

σ((0, . . . , 0), D | θ = N) = max{0, 1

S
− π

1− π} for every D for which |D| =
⌊
K

2

⌋
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Furthermore, when π ≥ 1/(1 + S), this strategy is time-consistent.

The strategy outlined by this result extends the example. In state Y , the sender

sends a single message, which we conveniently select to be (1, ..., 1). Each of the

components of this message can therefore be regarded as “good news”. What happens

in state N depends on the relation between the prior π and the number S, which

itself depends on K. Suppose K is even, for the sake of the argument here. If

π ≥ 1/(1 + S), the sender randomizes uniformly over B∗, which is the set of all
messages that consist of an equal number of 1’s (“good news”) and 0’s (“bad news”).

Crucially, the dictionary that accompanies each of these messages interprets only the

good news. If π < 1/(1 + S), each of these message-dictionary pairs is played with

probability 1/S, and the remaining probability is allocated to the message (0, ..., 0)

- i.e. all “bad news”.

Unlike the case of the “mixed”messages in B∗, there is considerable freedom in

selecting the dictionaries that accompany the “pure”messages (1, ..., 1) and (0, ..., 0).

Our construction has the property that the distribution over D conditional on each

of these messages is the same as conditional on B∗. Consequently, the strategy has
the property that D is unconditionally independent of θ - beyond the conditional

independence property D ⊥ θ | m, which was established by Lemma 1. This means
that even if the receiver could draw inferences from D, he would be unable to learn

anything about θ from the realization ofD itself. With regards to the question of how

large dictionaries should be, the optimal strategy described in Theorem 1 achieves

the highest probability of persuasion by interpreting half of the components.

Now examine the receiver’s reaction to various realizations of the sender’s strat-

egy. When he confronts the message (0, ..., 0), each of the realizations of D interprets

some “bad news”revealing that θ = N . In contrast, every other realization of (m,D)

satisfies mk = 1 for all k ∈ D and enables him to interpret mD. He thus learns that

the probability of mD conditional on θ = Y is one, whereas the probability of mD

conditional on θ = N is min{1/S, π/(1 − π)}. Therefore, his subjective likelihood
ratio of (m,D) is

ρσ(m,D) =
1

min{ 1
S
, π

1−π}
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which is, by definition, weakly above (1−π)/π and therefore persuades the receiver.

The basic intuition behind this result is basic: strategic interpretation of mixed

messages is often selective, explaining the meaning of the good news while remaining

silent about the bad news. A receiver with rational expectations would realize that

the mixed messages in B∗ only occur in state N . However, our receiver can only
draw inferences from message components that the sender interprets for him. But

since the sender only interprets the components that constitute good news, this

selective interpretation manages to convey a false sense that the mixed message is

actually good news. Moreover, as K gets large, each (m,D) ∈ B∗ identifies a distinct
pattern that is increasingly rare in state N yet occurs with probability one in state

Y . Therefore, even if π is quite small and even if B∗ is played with high probability
in state N , the receiver will be persuaded by the reports in B∗.
When π ≥ 1/(1+S), the sender is able to attain full persuasion. This means that

the sender’s strategy is time-consistent : since the receiver plays Y after every report,

the sender would not want to deviate from any realized report even if he could. In

other words, the assumption that the sender has commitment power is not required

in this range of parameters.

The proof of Theorem 1 and Sperner’s Theorem

Suppose that the feature that only one message is played in state Y is taken for

granted. As before, we can let this message be (1, ..., 1).3 Then, in order to persuade

the receiver, any report (m,D) that is played in state N must satisfy mA = 1 for

some non-empty collection of components A. If the dictionary that accompanies this

message interprets components outside A, the receiver will immediately infer that

θ = N . Therefore, the sender will only want to interpret components inside A. That

is, he will accompany m with a dictionary D ⊆ A. Moreover, making this subset

larger will only increase the rarity of the pattern mD in state N without changing

the fact that the pattern occurs for sure in state Y ; this will serve to increase the

receiver’s posterior on Y . It follows that the sender will choose D = A. In other

3The proof of the theorem is considerably more involved than the following sketch may suggest,
precisely because we are unable to establish at the outset that this assumption entails no loss of
generality; we are able to derive it only later in the course of the proof.
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words, every message m that is played in state N and has at least some good news

will pin down the dictionary that accompanies it to be the set of 1 components in

m.

Now consider two reports (m,D), (m′, D′) that are played in state N , and sup-

pose D′ ⊂ D. Our argument in the previous paragraph then implies m′D′ = mD′ -

i.e. the pattern m′D′ also appears in the message m. This means that the receiver

considers both reports when calculating his subjective likelihood ratio of (m′, D′). If

the sender shifted all the weight from (m,D) to (m′, D′), this subjective likelihood

ratio would remain unchanged. Repeatedly applying this argument, we can conclude

that without loss of generality, the sender’s optimal strategy satisfies the following

property: the collection of dictionaries that are played in state N as part of a per-

suasive report constitutes an anti-chain - i.e., no dictionary contains another. The

sender would want this anti-chain to be as large as possible, because this will make

the pattern highlighted by each dictionary increasingly rare in state N . A basic re-

sult in extremal combinatorics, known as Sperner’s Theorem (see Anderson (1987),

pp. 2-4), establishes that the largest anti-chain consisting of subsets of {1, ..., K} is
the set of all subsets of size bK/2c. This explains the role of S and B∗ in our result.

Comment: Restricting the set of available dictionaries

Theorem 1 is based on the assumption that the sender can interpret any collection

of message components of size
⌊
K
2

⌋
. If we think of a dictionary as a physical dataset

that the sender can grant access to, our assumption means that when K is large, the

sender has an incredibly large set of datasets at his disposal. Such richness becomes

increasingly unrealistic as K grows larger, and we may wish to restrict further the

set of available dictionaries. For instance, suppose that the sender can only interpret

individual message components - i.e. the set of available dictionaries is the set of

singletons {k}, k = 1, ..., K. In this case, the sender can attain full persuasion

whenever π > 1/(1 +K); in state N , he would randomize uniformly over all reports

(m,D) that satisfy mk = 1 for a unique k and D = {k}.
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4 An Interpreter with Uncertain Motives

Our interpretation that dictionaries are provided by a third player - a strategic

“interpreter”- raises a natural question: What if the interpreter’s interests are aligned

with the receiver? For instance, if we view media outlets as interpreting messages

by politicians to voters, then some outlets are partisans while others are objective,

and a politician does not necessarily know which outlet the voter follows.4 While

a biased media outlet may be strategically selective in its interpretation (by failing

to provide data about messages that address certain issues, or by ignoring messages

by particular party members), an objective media outlet would not pick and choose

which message components to interpret, but rather interpret them all.

Uncertainty over the interpreter’s motives introduces two novel complications to

the sender’s problem: (i) multiple interpretations - a given message may be under-

stood differently by receivers who follow interpreters with opposing interests, and

(ii) externalities - when the interpreter sides with the receiver, the dictionary that

accompanies one message may highlight patterns that appear in other messages (a

feature that does not occur under the optimal strategy in the basic model, as our

discussion of the proof of Theorem 1 at the end of Section 3 demonstrated). How

does the sender cope with these diffi culties when designing his optimal strategy?

To address this question, we extend the model of Section 2 by assuming that the

receiver may be of two types: “rational”with probability λ or “non-rational”with

probability 1− λ. A non-rational receiver behaves exactly as in Section 2. That is,
given a sender strategy σ, his subjective posterior belief following a report (m,D) is

given by (1). In contrast, a rational receiver knows σ and therefore forms the correct,

rational-expectations posterior (2).

We view this extended model as a reduced-form approach to accommodating

interpreters with opposing interests: with probability λ the interpreter sides with

the receiver and with probability 1 − λ he sides with the sender. Recall that to

substantiate the three-player interpretation of our model, we showed in Section 3

4Kennedy and Prat (2017) provide empricial evidence on the diversity of media outlets that
individuals get their news from.
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that when λ = 0, there is no loss of generality in restricting attention to strategies

that satisfy the conditional-independence property D ⊥ θ | m (since the third player

- the interpreter - chooses the dictionary after observing the message but not the

state). Whether this conclusion remains true when λ > 0 is an open question (we

conjecture that it does). Hence, to maintain the three-player interpretation of the

extended model with λ > 0, we assume that the sender is restricted to strategies

that satisfy D ⊥ θ | m. The proof of the results in this section makes subtle use of
this property.

When the interpreter’s interests are aligned with the sender’s, he will use the

dictionary that the sender would have wanted him to use. In this case, the re-

ceiver will act like the non-rational receiver in the reduced two-player model. When

the interpreter’s interests are aligned with the receiver’s, he wishes to impart his

rational expectations to the receiver, using an appropriate dictionary. This would

be the full dictionary D∗ = {1, ..., K}. The reason is that since D ⊥ θ | m, the
rational-expectation inference of θ from the report (m,D) is based entirely on m.

The rational-expectations posterior can thus be written as

Pr(θ = Y | m,D) =
π · σ(m | θ = Y )

π · σ(m | θ = Y ) + (1− π) · σ(m | θ = N)

∼
= Pr (θ = Y | m,D∗)

That is, a receiver who obtains the full dictionary D∗ from the interpreter would

be endowed with rational expectations, and therefore he corresponds to a rational

receiver in the reduced-form, two-player model.

Fix the sender’s strategy σ. We say that (m,D) persuades a non-rational receiver

if ρσ(m,D) ≥ (1−π)/π, where ρσ(m,D) is the subjective likelihood ratio that a non-

rational receiver assigns to the report (m,D), as defined by (3). We say that (m,D)

persuades a rational receiver if

ρ∗σ(m,D) =
σ(m,D | θ = Y )

σ(m,D | θ = N)
=
σ(m | θ = Y )

σ(m | θ = N)
= ρσ(m,D∗) ≥ 1− π

π

where ρ∗σ(m,D) is the likelihood ratio that a rational receiver assigns to the report

(m,D). The second equality is due to the restriction that D ⊥ θ | m under the
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sender’s strategy σ.

The probability of persuasion induced by a sender strategy σ is the probability

that the receiver chooses Y , given our model of how each receiver type responds to

reports. Denote

π∗ =
1

1 + S
λ∗ = 1− 1

S

We now present a complete characterization of the maximal probability of persuasion

(and strategies that implement the optimum), for three different ranges of the values

of the parameters λ, π.

Theorem 2 If λ ≥ λ∗, then, the maximal probability of persuasion is 2π, and the

following strategy implements this optimum:

σ((1, . . . , 1), D∗ | θ = Y ) = 1

σ((1, . . . , 1), D∗ | θ = N) =
π

1− π
σ((0, . . . , 0), D∗ | θ = N) =

1− 2π

1− π

When λ ≥ λ∗, it is very likely that the receiver is rational. Therefore, the

sender focuses on persuading the rational type as often as possible. By doing so, he

persuades the non-rational type whenever he persuades the rational type, but he is

unable to take advantage of the former’s limitation.

Theorem 3 If λ < λ∗ and π ≤ π∗, then the maximal probability of persuasion is

π(1 + (1− λ)S), and the following strategy implements this optimum:

σ((1, . . . , 1), D | θ = Y ) =
1

S
for every D for which |D| =

⌊
K

2

⌋
σ(m,D | θ = N) =

π

1− π for every (m,D) ∈ B∗

σ((0, . . . , 0), D | θ = N) =
1

S
− π

1− π for every D for which |D| =
⌊
K

2

⌋
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When λ < λ∗ and π ≤ π∗, the sender focuses on persuading the non-rational

receiver and exploits this type’s inability to make inferences about uninterpreted

message components. That is, for this parameter range it is not optimal to try

and persuade both the rationals and the non-rationals. In particular, conditional on

θ = N , he assigns probability Sπ/(1−π) to the set of reports B∗; with the remaining
probability, the sender submits a message consisting of “bad news”. Recall that what

characterizes a report in B∗ is that the message has
⌊
K
2

⌋
components that constitute

“good news”and the dictionary interprets only these components. A rational receiver

type recognizes that such a report implies θ = N , whereas a non-rational type finds

the report persuasive.

Theorem 4 If λ < λ∗ and π > π∗, then the maximal probability of persuasion is

1− λS(1− 2π)/(S − 1), and the following strategy implements this optimum:

σ((1, . . . , 1), D | θ = Y ) =
1

S
for every D for which |D| =

⌊
K

2

⌋
σ(m,D | θ = N) =

1− 2π

(1− π)(S − 1)
for every (m,D) ∈ B∗

σ((1, . . . , 1), D | θ = N) =
1

S
− 1− 2π

(1− π)(S − 1)
for every D for which |D| =

⌊
K

2

⌋
When π > π∗, the sender can persuade a non-rational receiver with probability

one. Moreover, if he played a strategy that exclusively targets the non-rational re-

ceiver, he could ensure that this type will strictly prefer to accept - i.e. his subjective

likelihood ratio will exceed (1−π)/π for every report he encounters. The sender can

use this slack to play a different strategy that increases the probability of persuading

the rational type. Note that when λ = 0 (as in Section 3), the sender’s use of the

slack is payoff-irrelevant. For instance, the strategy outlined by Theorem 1 uses the

slack to increase the probability of B∗ in state N , compared with the strategy given
by Theorem 4. Therefore, the two strategies are slightly different, yet both attain

full persuasion when λ = 0 and π ≥ π∗.
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In Theorems 3-4 (as in Section 3), the sender’s strategy assigns the same distri-

bution over D in each state - it is uniform over B∗. Therefore, the sender’s use of
dictionaries per se does not convey any information about the underlying state.

(Figure 1)

The strategies outlined by Theorems 2-4 differ in their targeting of receiver types.

Figure 1 summarizes these differences. When λ ≥ λ∗, the sender ignores the non-

rational type and behaves as if the receiver has rational expectations. In contrast,

when λ < λ∗, his strategy targets the non-rational type and maximizes the probabil-

ity of persuading him. In particular, when π ≤ π∗, he ignores the rational type and

behaves as if λ = 0; but when π > π∗, he can fully persuade the non-rational type

and has enough slack to increase the probability of persuading the rational type.

Sketch of the proof of Theorems 2-4

The proof of Theorems 2-4 is given in Section 4.1 and proceeds stepwise. First, we

simplify the construction of the sender’s optimal strategy σ by noting that if the

rational receiver is persuaded by a report (m,D), we can set D = D∗ without loss of
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generality. Similarly, if a report (m,D) does not persuade any receiver type, we can

set D = ∅ without loss of generality. Second, we show that under σ, the set of reports
that only persuade a non-rational receiver (denoted Bσ) does not contain redundan-
cies, in the following sense: for every pair of distinct reports (m,D), (m′, D′) ∈ Bσ,
mD 6= m′D - i.e., the non-rational receiver would not be persuaded by the reports

(m′, D) or (m,D′). In particular, this implies that D  D′. Our third step estab-

lishes that under σ, all reports in Bσ induce the same subjective likelihood ratio
(1− π)/π for a non-rational receiver. Next, we show that without loss of generality,

the optimal strategy satisfies the following restriction: Whenever Bσ is non-empty,
it is impossible for both dictionaries D∗ and ∅ to be played with positive probability
in state N . Finally, we use all these steps to calculate an upper bound on the prob-

ability of persuasion, and show that it is attained by the strategy described in the

three theorems.

When λ > 0, the sender’s problem is complicated by the fact that his messages are

interpreted differently by different receiver types. As observed at the end of Section

3, when λ = 0, the reports that are sent in state N (which persuade only a non-

rational receiver) have the property that the dictionaries in these reports highlight

a pattern that does not appear in any other message that is sent in state N . This

is no longer the case when λ > 0, where the sender may send messages in state N

that persuade both receiver types; and these messages may contain patterns that are

highlighted by dictionaries that accompany other messages. This makes the proof of

the λ > 0 case more intricate.

The additional complication is especially prominent in one of the key Lemmas

in the proof (Lemma 5), which shows that when Bσ 6= ∅, optimal persuasion can be
achieved by either sending a full dictionary in state N with some probability, or by

sending a null dictionary in N with some probability, but not both. In particular,

when π > π∗, the sender can send reports in state N that persuade both receiver

types. He does so by shifting weight between reports in Bσ and reports with both
null and full dictionaries. However, since the full dictionary highlights patterns

that appear in messages other than the one it accompanies, this weight-shifting

potentially reduces the likelihood ratio of reports that include a full dictionary below
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the acceptance threshold. The shift must therefore be carefully constructed to avoid

this pitfall. This “externality”across reports makes the case of λ > 0 more intricate.

4.1 The Proof

The proof is presented for an arbitrary value of λ. Certain steps become redundant

when λ = 0 (such that the model of this section is reduced to the basic model of

Section 2). In what follows, we point out these steps, so that a reader who is only

interested in the λ = 0 case can skip them.

We begin with a few preliminary definitions and basic observations that simplify

notation and the construction of the sender’s optimal strategy. Fix a sender’s strategy

σ. Let Bσ be the set of reports (m,D) that are played with positive probability

conditional on θ = N and persuade a non-rational receiver but not a rational receiver.

That is,

Bσ =

{
(m,D) | σ(m,D | θ = N) > 0 and ρσ(m,D) ≥ 1− π

π
> ρ∗σ(m,D)

}
For any report (m,D) ∈ Bσ there must be some message m′ such that m′ is part

of a report which is realized with positive probability in state Y and m′D = mD.

Otherwise the non-rational receiver would not be persuaded by the report (m,D).

Definition 1 We say that a message m′ justifies the pair (m,D) if: (i) the pair

(m,D) satisfies σ(m,D | θ = N) > 0 and ρσ(m,D) ≥ 1−π
π
; (ii) σ(m′, D′ | θ = Y ) > 0

for some dictionary D′, and (iii) m′D = mD.

In the following observation, Part (ii) is redundant when λ = 0.

Observation 1 There is no loss of generality in assuming that σ has the following
properties for every (m,D) that is played with positive probability under σ: (i) If

(m,D) persuades no receiver type, then D = ∅; (ii) If (m,D) persuades a rational

receiver, then D = D∗. In particular, every report (m,D) ∈ Bσ satisfies D 6= D∗, ∅;
and if (m,D) persuades a rational receiver, it also persuades a non-rational receiver.
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Proof. Fix a sender strategy σ and consider a report (m,D) that is played with

positive probability under σ.

First, assume that (m,D) persuades no receiver type. Suppose the sender deviates

to a strategy that always replaces the report (m,D) with (m, ∅), but otherwise
coincides with σ. By definition, the probability of persuasion conditional on this

report is weakly higher than under the original report. However, we need to check

that the deviation does not lower the probability of persuasion conditional on other

realizations (m′, D′). Because the deviation does not change the distribution of

messages conditional on any state, it does not affect the response of any receiver

type to such (m′, D′).

Second, assume that (m,D) persuades a rational receiver. Suppose the sender

deviates to a strategy that replaces (m,D) with (m,D∗), but otherwise coincides with

σ. Since the deviation does not affect the distribution of messages conditional on any

state, it does not change the response of a rational receiver to any realized report,

and it does not change the response of a non-rational receiver to any (m′, D′) 6=
(m,D). However, the deviation ensures that the non-rational receiver reacts to

(m,D∗) exactly like the rational receiver, because ρσ(m,D∗) = ρ∗σ(m,D) for every

D.

Observation 2 There is no loss of generality in restricting attention to strategies
with the following property: If the reports (m,D) with D 6= ∅ and (m′, ∅) are both
realized with positive probability under σ, then m′D 6= mD.

Proof. Assume the contrary - i.e. m′D = mD. Suppose the sender deviates to

a strategy that replaces (m′, ∅) with (m′, D) but otherwise coincides with σ. By

Observation 1, (m′, ∅) does not persuade any type prior to the deviation. And since
the deviation does not affect the distribution of messages conditional on any state, it

does not change the response of any receiver type to any report (m′′, D′′) 6= (m′, ∅).
Therefore, the deviation weakly raises the probability of persuasion.

Henceforth, we will restrict attention to strategies that satisfy the properties of

Observations 1 and 2. In addition, whenever we refer to a report with some generic

dictionary, we mean that the dictionary is non-empty.
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An important point regarding our proof strategy

We will now proceed with a sequence of lemmas that involve modifications of the

sender’s strategy. We will allow some of the modified strategies to violate the con-

straint that D and θ are independent conditional on m, but we will maintain the

constraint that both receiver types do not draw inferences from D - i.e., they only

use the joint distribution over (θ,m) to form beliefs for any given D. At the end,

we will arrive at a strategy that does satisfy both restrictions, and this justifies our

method of proof. Therefore, from now on, we can rewrite ρ∗σ(m,D) as

ρ∗σ(m) =
σ(m | θ = Y )

σ(m | θ = N)

because the rational receiver’s likelihood ratio of any report (m,D) will only be a

function of m.

The following lemma establishes that without loss of generality, the set Bσ of
reports that only persuade the non-rational receiver has a simple structure: every

dictionary that features in Bσ effectively interprets only the particular message it is
coupled with.

Lemma 2 Without loss of generality, an optimal sender strategy σ satisfies the fol-
lowing property: m′D 6= mD for every pair of distinct reports (m,D), (m′, D′) ∈ Bσ.

Proof. Let σ be an optimal sender strategy. We will modify it in two phases into a
new strategy that satisfies the property in the statement of the lemma and induces

the same probability of persuasion.

In the first phase, we construct a partition {T1, ..., TL} of Bσ as follows. For every
l = 1, 2, ..., select an arbitrary report (ml, Dl) ∈ Bσ − ∪h<lTh, and define

Tl = {(m,D) ∈ Bσ − ∪h<lTh | mDl = ml
Dl}

Modify σ as follows. For each l = 1, ..., L and any (m,D) ∈ Tl, D 6= Dl, shift the

probability of (m,D) conditional on θ = N to the report (m,Dl). By definition, both
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(m,D) and (ml, Dl) persuade only a non-rational receiver. Perform the following

additional modification. By the definition of Bσ, there must be a message m that

justifies (ml, Dl). That is, mDl = ml
Dl , and there is a dictionary D such that (m,D)

is played with positive probability in Y . If D 6= D∗, then shift the probability

of every such (m,D) conditional on Y to (m,Dl). By construction, mDl = ml
Dl .

Therefore, (m,Dl) persuades a non-rational receiver. And since the deviation does

not affect the distribution over messages conditional on any state, it does not change

the response of any receiver type to any other realized report.

Let us now turn to the second phase. Start this phase by shifting the probability

of any (m,DL) ∈ TL conditional on θ = N to some report in TL, denoted (m̃L, DL).

This effectively transforms TL into a singleton {(m̃L, DL)}. By the construction of
the first phase, every (m,DL) ∈ TL satisfies mDL = m̃L

DL . Therefore, the deviation

does not change the non-rational receiver’s subjective likelihood ratio of (m̃L, DL),

such that he continues to be persuaded by this report. Moreover, by the construction

of the first phase, for every l < L and every (m,Dl) ∈ Tl, mDl 6= m̃L
Dl . Therefore,

the deviation does not affect a non-rational receiver’s subjective likelihood ratio of

(m,Dl) ∈ Tl for all l < L.

Now suppose that for some l < L, we have transformed the cells Tl+1, ..., TL into

singletons {(m̃l+1, Dl+1)}, ..., {(m̃L, DL)} in such a manner. Suppose that there is
some (m,Dl) ∈ Tl such that mDh 6= m̃h

Dh for every h > l. Rename this report

as (m̃l, Dl), and shift the probability of any (m,Dl) conditional on N to (m̃l, Dl).

Alternatively, suppose that for every (m,Dl) ∈ Tl there is some h > l such that

mDh = m̃h
Dh . For any such (m,Dl), shift its probability conditional on N to one of

the reports (m̃h, Dh) satisfying m̃h
Dh = mDh . By the same logic as in the previous

paragraph, the deviation in these two alternative cases does not affect a non-rational

receiver’s subjective likelihood ratio of any report.

Finally, we need to check that the changes in the second phase do not affect the

response of a rational receiver to a report (m,D) that persuaded him prior to these

changes. By Observation 1, D = D∗, and there is no D′ ⊂ D∗ such that (m,D′)

is played with positive probability. Since all the changes made in the second phase

do not shift weight to messages that are not in Bσ, they cannot affect the rational
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receiver’s response to a report outside of Bσ.
At the end of the second phase, Bσ has been effectively transformed into the

set {(m̃1, D1)}, ..., {(m̃L, DL)}, which by construction satisfies the property in the
lemma’s statement.

From now on, we restrict attention to sender strategies σ that satisfy Lemma 2.

Corollary 1 Let (m,D), (m′, D′) ∈ Bσ. If there is a message m∗ that justifies both
(m,D) and (m′, D′) , then D 6⊆ D′ and D′ 6⊆ D.

Proof. Assume, by contradiction, that there exist (m,D), (m′, D′) ∈ Bσ that are
justified by a message m∗ and D ⊆ D′. This means that m∗D = mD and m∗D′ = m′D′.

Therefore, mD∩D′ = m∗D∩D′ = m′D∩D′ . But D ∩ D′ = D, which implies that mD =

m′D, in contradiction to Lemma 2.

Corollary 2 Let m∗ be a message that is played with positive probability in state Y
under σ. Then, the number of reports that m∗ justifies is at most S.

Proof. By Corollary 1, if m∗ justifies two reports (m,D) and (m′, D′), then D and

D′ do not contain one another. It follows that the set of all dictionaries that are

part of reports justified by m∗ constitutes an anti-chain - i.e. a collection of subsets

of {1, ..., K} that do not contain one another. By Sperner’s Theorem, the maximal
size of such a collection is S.

Lemma 3 For every report (m,D) ∈ Bσ there exists a message m′ that justifies
(m,D), for which ρ∗σ(m′) > ρσ(m,D). Furthermore, we can assume without loss of

generality that if σ(m′, D′ | θ) > 0, then D′ = D∗.

Proof. Let (m,D) ∈ Bσ. There must be a message m′ that justifies (m,D) -

otherwise, (m,D) would not persuade a non-rational receiver. Assume, by contra-

diction, that ρσ(m,D) ≥ ρ∗σ(m′) for any such message m′. In addition, observe that
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if m′D = mD and yet m′ does not justify (m,D), then Definition 1 implies that

σ(m′, D′ | θ = Y ) = 0 for any D′. It follows that for every m′ for which m′D = mD,

ρσ(m,D) =

∑
m′′|m′′D=mD

σ(m′′ | θ = Y )∑
m′′|m′′D=mD

σ(m′′ | θ = N)
≥ σ(m′ | θ = Y )

σ(m′ | θ = N)
= ρ∗σ(m′)

Furthermore, the inequality is strict for m′ = m - otherwise, we would have ρ∗σ(m) ≥
(1− π)/π, contradicting the fact that (m,D) ∈ Bσ (and therefore does not persuade
a rational receiver). Hence, cross multiplying the denominators and summing over

all m′ with m′D = mD yields,

[
∑

m′′|m′′D=mD
σ(m′′| θ = Y )] · [

∑
m′D|m′D=mD

σ(m′| θ = N)] >

[
∑

m′′|m′′D=mD
σ(m′′| θ = Y )] · [

∑
m′D|m′D=mD

σ(m′| θ = N)]

which cannot be true since both sides of the strict inequality are identical.

Suppose that σ(m′, D′ | θ) > 0 and yet D′ 6= D∗. Since ρ∗σ(m′) > ρσ(m,D) ≥
(1 − π)/π the rational receiver type is persuaded by (m′, D′). So by Observation 1

there is no loss by deviating to a strategy in which (m′, D′) is replaced by (m′, D∗).

Lemma 4 Without loss of generality, ρσ(m,D) = (1− π)/π for all (m,D) ∈ Bσ.

Proof. Let (m,D) and (m̄, D̄) be two reports in Bσ such that ρσ(m,D) ≤ ρσ(m,D) ≤
ρσ(m̄, D̄) for each (m,D) ∈ Bσ. Assume that ρσ(m,D) < ρσ(m̄, D̄). Suppose that

the sender deviates from σ to a strategy σ̂ that shifts a weight of ε > 0 from (m,D)

to (m̄, D̄) in state N . By Lemma 2, m̄D 6= mD and mD̄ 6= m̄D̄. Therefore,

ρσ̂(m,D) =

∑
m|mD=mD

σ(m | θ = Y )∑
m|mD=mD

σ(m | θ = N)− ε > ρσ(m,D) ≥ 1− π
π

(4)

ρσ̂(m̄, D̄) =

∑
m|mD̄=m̄D̄

σ(m | θ = Y )∑
m|mD̄=m̄D̄

σ(m | θ = N) + ε
< ρσ(m̄, D̄)

By our initial assumption, ρσ̂(m,D) < ρσ̂(m̄, D̄) for suffi ciently small ε. By (4),

this implies that ρσ̂(m̄, D̄) > 1−π
π
. By Lemma 2 ρσ̂(m,D) = ρσ(m,D) for every
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(m,D) ∈ Bσ−{(m,D), (m̄, D̄)}. Since the deviation does not involve reports outside
Bσ, it cannot lower the probability of persuading a rational receiver. It follows that
the deviation weakly raises the probability of persuasion.

Therefore, we can assume without loss of generality that ρσ(m,D) is the same for

all (m,D) ∈ Bσ. Suppose this likelihood ratio exceeds (1− π)/π. Pick an arbitrary

(m,D) ∈ Bσ. By Lemma 3, there exists a report (m′, D∗) such that m′ justifies

(m,D) and ρ∗σ(m′) > ρσ(m,D), such that a receiver of any type is persuaded by

(m′, D∗). Suppose the sender deviates to a strategy σ̂ that shifts a weight ε > 0

from (m,D) to (m′, D∗) in state N . Note that (m′, D∗) /∈ Bσ, by Observation 1.
We can choose ε to be small enough such that a non-rational receiver’s subjective

likelihood ratio of any report in Bσ remains above (1 − π)/π. Furthermore, since

ρ∗σ(m′) > (1− π)/π, the deviation will satisfy ρ∗σ̂(m′) > (1− π)/π if ε is suffi ciently

small, such that a receiver of any type will still be persuaded by (m′, D∗). Therefore,

the deviation weakly raises the probability of persuasion.

The next Lemma, which is a key step in the proof of the λ > 0 case (it is irrelevant

for the λ = 0 case), illustrates the complications that arise in this case when the

sender wants to shift weight from one report to another. Due to the externalities

across reports (i.e., a dictionary in one report may highlight message components

that appear in other reports), this shifting of weight must be done in a particular

manner to not adversely affect the likelihood ratios associated with the reports.

Lemma 5 Without loss of generality, we can restrict attention to sender strategies
σ that satisfy the following property: If Bσ 6= ∅, then either D∗ or ∅ is not part of
any report in state N .

Proof. Assume, by contradiction, that Bσ 6= ∅, and that σ(m,D∗ | θ = N) > 0 and

σ(m0, ∅ | θ = N) > 0 for some m,m0. Let (m̂, D̂) ∈ Bσ. By Lemma 3, there exists
a message m∗ that justifies (m̂, D̂) such that ρσ(m∗, D∗) > (1− π)/π. Let G denote

the number of reports in Bσ that m∗ justifies. Now perform a two-step procedure.

Step 1. Suppose there exists m∗ as described above such that σ(m∗, D∗ | θ = N) >

0. If not, proceed to Step 2. Let ε be arbitrarily close to zero (positive or negative).
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Suppose the sender deviates to a strategy σ̂ that satisfies

σ̂(m∗, D∗ | θ = N) = σ(m∗, D∗ | θ = N) + ε

σ̂(m0, ∅ | θ = N) = σ(m0, ∅ | θ = N) + (G− 1)ε

and

σ̂(m,D | θ = N) = σ(m,D | θ = N)− ε

for all (m,D) ∈ Bσ for which m∗D = mD; otherwise, σ̂ coincides with σ. By the

definition of m∗ (see the previous paragraph), ρσ(m∗, D∗) > (1− π)/π. Hence,

ρσ̂(m∗, D∗) =
σ(m∗, D∗ | θ = Y )

σ(m∗, D∗ | θ = N) + ε
>

1− π
π

(5)

for suffi ciently small ε (positive or negative). Note also that we constructed σ̂ such

that if ρσ(m,D∗) > 0 for some m 6= m∗, then ρσ̂(m,D∗) = ρσ(m,D∗).

Let (m,D) ∈ Bσ. By Lemma 2, m′D 6= mD for every message m′ that is part of

some report in Bσ. This, together with the specification of σ̂, implies that ρσ̂(m,D) =

ρσ(m,D). This is immediate when m∗D 6= mD. When m∗D = mD,

ρσ̂(m,D) =

∑
m′|m′D=mD

σ(m′ | θ = Y )∑
m′|m′D=mD

σ(m′ | θ = N) + ε− ε = ρσ(m,D)

It follows that when the sender deviates from σ to σ̂, the probability of persua-

sion changes by (1 − π)[1 − (1 − λ)G]ε. For any G 6= 1/(1 − λ), we can find an

arbitrarily small ε (which may be positive or negative) such that the deviation is

strictly profitable, a contradiction. If G = 1/(1 − λ), then we can pick ε < 0 such

that (5) is satisfied, and raise the absolute value of ε until either σ̂(m∗, D∗ | θ = N)

or σ̂(m0, ∅ | θ = N) hits zero.5 Repeat this type of deviation for every (m̂, D̂) ∈ Bσ
and m∗ as defined above.

Step 2. By Step 1, we can restrict attention to strategies in which either the message
5This case of equality is the reason we need to qualify the statement of the Lemma by saying

that it is without loss of generality.
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m∗ or the null dictionary are not part of any report in N. If the former is true, we are

done. If only the latter is true, then consider some (m̂, D̂) ∈ Bσ and m∗ as defined
above. Let m∗∗ 6= m∗ be some message for which σ(m∗∗, D∗ | θ = N) > 0 (if none

exists, we are done). By definition, m∗∗ does not justify any report in Bσ. Consider
an alternative strategy σ̂ that satisfies

σ̂(m∗, D∗ | θ = Y ) = σ(m∗, D∗ | θ = Y )(1− ε)
σ̂(m∗∗, D∗ | θ = Y ) = σ(m∗∗, D∗ | θ = Y ) + σ(m∗, D∗ | θ = Y )ε

σ̂(m∗∗, D∗ | θ = N) = σ(m∗∗, D∗ | θ = N) +
π

1− πσ(m∗, D∗ | θ = Y )ε

σ̂(m0, ∅ | θ = N) = σ(m0, ∅ | θ = N) + (G− 1)
π

1− πσ(m∗, D∗)ε

and

σ̂(m,D | θ = N) = σ(m,D | θ = N)− π

1− πσ(m∗, D∗ | θ = Y )ε

for every (m,D) ∈ Bσ for which mD = m∗D. Otherwise, σ̂ coincides with σ.

First, we show that all the reports that contain D∗ persuades both receivers

under the new strategy. Because m∗ justifies (m̂, D̂) ∈ Bσ, we have that σ(m∗, D∗ |
θ = Y ) > 0. Since we are in the case where σ(m∗, D∗ | θ = N) = 0, we have that

ρσ̂(m∗, D∗) > (1− π)/π. By Observation 1, ρσ(m∗∗, D∗) ≥ (1− π)/π. Therefore,

ρσ̂(m∗∗, D∗) =
σ(m∗∗, D∗ | θ = Y ) + σ(m∗, D∗ | θ = Y )ε

σ(m∗∗, D∗ | θ = N) + π
1−πσ(m∗, D∗ | θ = Y )ε

≥ 1− π
π

In addition, by the construction of σ̂, ρσ̂(m,D∗) = ρσ(m,D∗) for every (m,D∗) with

m 6= m∗,m∗∗ that is realized with positive probability.

Next, we show that all the reports in Bσ persuade the non-rational receiver under
the alternative strategy. Consider a report (m′, D′) ∈ Bσ. Let m′′ be a message that
justifies (m′, D′). The message m′′ is not part of any report in state N . To see why,

note that there are two options: Either m′′ is part of a report that contains D∗, or

m′′ is part of a report in Bσ. By Step 1, (m′′, D∗) is not realized in state N if m′′
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justify (m′, D′) and the latter option contradicts Lemma 2. Therefore, it follows that∑
m|mD′=m

′
D′

σ(m | θ = N) = σ(m′, D′ | θ = N)

and the non-rational receiver’s likelihood ratio of (m′, D′) under σ̂ is therefore ρσ̂(m′, D′) =

ρσ(m′, D′) if m∗D′ 6= m′D′ and

ρσ̂(m′, D′) =

∑
m|mD′=m

′
D′
σ(m | θ = Y )− σ(m∗, D∗ | θ = Y )ε

σ(m′, D′ | θ = N)− π
1−πσ(m∗, D∗ | θ = Y )ε

≥ 1− π
π

if m∗D′ = m′D′ , where the inequality follows from the fact that ρσ(m′, D′) ≥ 1−π
π
since

(m′, D′) ∈ Bσ.
Therefore, when the sender deviates from σ to σ̂, the probability of persuasion

changes by

[1− (1− λ)G] πσ(m∗, D∗ | θ = Y )ε

As in Step 1, for any G 6= 1/(1− λ), we can find an arbitrarily small ε (which may

be positive or negative) such that the deviation is strictly profitable, a contradiction.

If G = 1/(1 − λ), then we can select ε < 0 such that either σ̂(m∗∗, D∗ | θ = N) or

σ̂(m0, ∅ | θ = N) hits zero.

The remainder of proof proceeds in two steps. First, we derive an upper bound

on the probability of persuasion (as a function of π and λ). Then, we show that the

strategies outlined in Theorems 2-4 implement this bound.

Let σ be a sender strategy. To obtain an upper bound on the probability of

persuasion under σ, note that the probability of persuasion in state Y cannot exceed

one.

Let M∗ denote the set of messages that are part of some report in state Y .

Denote I = |M∗|. Let C = {C1, · · · , CL} be a partition of Bσ, where each cell Cl is
defined by the (distinct) subset of messages J(l) ⊆ M∗ that justify every report in

the cell. Therefore, L ≤ 2I − 1. For the final piece of notation we let g(l) =| Cl | and
β(l) =

∑
(m,D)∈Cl σ(m,D | θ = N).
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Consider some (m,D) ∈ Cl ⊆ Bσ and a message m′ ∈ J(l). Since m′ justifies

(m,D), m′D = mD. By Lemma 2, there cannot be a dictionary D′ ⊂ D∗ such that

(m′, D′) ∈ Bσ. Hence, by Observation 2, if the messagem′ is sent in the state N, then
it must be sent with D∗. It follows that for any l = 1, ..., L, a non-rational receiver’s

likelihood ratio of a report (m,D) ∈ Cl ⊆ Bσ is∑
m′∈J(l) σ(m′ | θ = Y )

σ(m,D | θ = N) +
∑

m′∈J(l) σ(m′, D∗ | θ = N)
=

1− π
π

,

where the equality follows from Lemma 4. This equation can be rewritten as

σ(m,D | θ = N) =
∑

m′∈J(l)

[
π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N)] (6)

Note that the R.H.S. remains the same for any (m,D) ∈ Cl. Hence, if we write the
above equation for each (m,D) ∈ Cl and sum over all the reports in Cl we obtain

the following equation:

β(l) = g(l) ·
∑

m′∈J(l)

[
π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N)

]
(7)

Combining (6) and (7) implies that for every l and every (m,D) ∈ Cl, σ(m,D |
θ = N) = β(l)/g(l), such that the the non-rational receiver’s likelihood ratio of all

reports in Cl is ∑
m′∈J(l) σ(m′ | θ = Y )

β(l)
g(l)

+
∑

m∈J(l) σ(m′, D∗ | θ = N)
=

1− π
π

, (8)

Solving for β(l) in (8) and summing over l give us

L∑
l=1

β(l) =
L∑
l=1

g(l)
∑

m′∈J(l)

[
π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N)

]

=
∑

m′∈M∗

[
π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N)

] ∑
l∈1,...,L|m∈J(l)

g(l)
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where the second equality follows from changing the order of summation. Now,

observe that if σ(m′, D∗ | θ = N) > 0, then it must be the case that ρ∗σ(m′) ≥
(1− π)/π. Therefore,

π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N) ≥ 0

By definition,
∑

l∈J−1(m′) g(l) is the number of reports that are justified by m′. By

Corollary 2, this number is at most S. Therefore,

L∑
l=1

β(l) ≤
∑

m′∈M∗

[
π

1− πσ(m′ | θ = Y )− σ(m′, D∗ | θ = N)

]
S (9)

=

[
π

1− π −
∑

m′∈M∗
σ(m,D∗ | θ = N)

]
S

where the final equality follows since
∑

m′∈M∗ σ(m′ | θ = Y ) = 1.

We now employ inequality (9) to derive an upper bound on the probability of

persuasion in state N . By Lemma 5, we only need to consider three cases. (When

λ = 0, Lemma 5 is not required, and cases 2 and 3 below coincide.)

Case 1: Bσ = 0. In this case, we know from Section 2 that the maximal probability

of persuasion is 2π.

Case 2: Bσ 6= ∅, and no report that is played in state N includes the dictionary D∗.

Therefore, σ(m′, D∗ | θ = N) = 0 for every m′ ∈M∗. Plugging that into (9) gives us

L∑
l=1

β(l) ≤ π

1− πS

which implies that the overall probability of persuasion is bounded from above by

π + (1− π)(1− λ)
π

1− πS = π[1 + S(1− λ)] (10)

Case 3: Bσ 6= ∅, and no report that is played in state N includes the dictionary ∅.
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This means that
L∑
l=1

β(l) = 1−
∑

m′∈M∗
σ(m′, D∗ | θ = N)

Plugging this into (9) yields

1−
∑

m′∈M∗
σ(m′, D∗ | θ = N) ≤

[
π

1− π −
∑

m′∈M∗
σ(m′, D∗ | θ = N)

]
S

or, equivalently, ∑
m′∈M∗

σ(m′, D∗ | θ = N) ≤ πS − (1− π)

(1− π)(S − 1)

The L.H.S of this inequality is the probability of persuading a rational receiver in

state N . The R.H.S is an upper bound on this probability. Note that if π < π∗,

we obtain a contradiction because the R.H.S is negative. It follows that Case 3 is

only possible when π ≥ π∗. As to the non-rational receiver, the overall probability of

persuading him is at most one. The resulting upper bound on the overall probability

of persuasion in this case is

π + (1− π)(1− λ) + (1− π)λ
πS − (1− π)

(1− π)(S − 1)
= 1− λS(1− 2π)

S − 1
(11)

Combining Cases 1-3, it is easy to check that the tight upper bound on the

overall probability of persuasion is 2π when λ ≥ λ∗; (10) when λ < λ∗ and π ≤ π∗;

and (11) when λ < λ∗ and π > π∗. Our final step is to verify that the strategy

outlined in Theorems 2-4 implements the upper bound. Without loss of generality,

denote m∗ = (1, 1, . . . , 1) and m0 = (0, 0, . . . , 0). Note that the strategy outlined in

Theorems 2-4 satisfies the feature that D is independent of θ conditional on m, and

therefore a rational receiver indeed relies purely on m to draw inferences regarding

the underlying state. There are three case to consider.

Case 1: Let the sender’s strategy σ be the one outlined in Theorem 2. This is

the standard case of Kamenica and Gentzkow (2011) described in Section 2, which
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induces a probability of persuasion 2π.

Case 2: Let the sender’s strategy σ be as in Theorem 3. Note that the strategy is

only feasible when Sπ/(1 − π) ≤ 1. By construction, every (m,D) ∈ Bσ and every
(m∗, D′) that is played in state Y satisfies ρσ(m,D) = ρσ(m∗, D′) = (1− π)/π, such

that the report persuades a non-rational receiver. As to a rational receiver, note

that the message fully reveals whether θ = Y . Therefore, the rational receiver is

only persuaded by the reports (m∗, D′). The probability of persuasion is therefore

π + (1− π)S
π

1− π (1− λ) = π[1 + S(1− λ)]

Case 3: Let the sender’s strategy σ be as in Theorem 4. Note that this strategy is

only feasible when Sπ/(1 − π) ≥ 1. By construction, every (m,D) that is played

with positive probability satisfies ρσ(m,D) = S, which is by assumption greater than

(1− π)/π. Therefore, a non-rational receiver is persuaded with probability one. As

to the rational receiver, note that the only message that is played in state Y is m∗.

Moreover,

ρ∗σ(m∗) =
1

1− (1−2π)S
(1−π)(S−1)

which exceeds (1− π)/π. Therefore, the probability of persuasion is

λ

[
π + (1− π)

(
1− (1− 2π)S

(1− π)(S − 1)

)]
+ 1− λ = 1− λS(1− 2π)

S − 1

These calculations establish that the strategy outlined in Theorems 2-4 imple-

ments the above-derived upper bounds on the probability of persuasion for each of

the three parameter ranges.
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5 Alternative Notions of Dictionaries

The notion of a dictionary employed in Sections 2-4 postulates that data regarding

the sender’s strategy takes the form of a conditional distribution of a single subset

of message components (where the conditioning is on θ). In this section we discuss

alternative forms of data that the sender could choose to provide and explore their

implications for the maximal probability of persuasion. We focus on the case of λ = 0

as in Sections 2-3.

5.1 Splitting Dictionaries

Suppose that the sender wishes to accompany a particular message m with an inter-

pretation of its first two components, m1 and m2. So far, we assumed that he can

only use a dictionary that discloses the joint distribution over (m1,m2) conditional

on θ. Alternatively, the sender could interpret the two components separately: in-

stead of providing a single dictionary D = {1, 2}, he would simultaneously provide
two smaller dictionaries {1} and {2}. When the receiver obtains these two small
dictionaries, he learns (σ(m1 | θ)) and (σ(m2 | θ)), but he has no data about the
joint distribution of (m1,m2) conditional on θ. In line with our approach that the

receiver does not draw inferences beyond the data he receives, we assume that he

regards the two components as independent conditional on θ. In other words, even

when m1 and m2 act as correlated signals of θ, the receiver neglects this correlation.

More generally, define a composite dictionary D to be a collection of mutually

disjoint subsets of {1, ..., K}. Given a sender strategy σ, the receiver’s posterior belief
on state Y after being confronted with the report (m,D) is

π
∏
D∈D

σ(mD | θ = Y )

π
∏
D∈D

σ(mD | θ = Y ) + (1− π)
∏
D∈D

σ(mD | θ = N)

The notion of a composite dictionary and our definition of the receiver’s posterior

belief are very similar to De Barreda et al. (2018), who study persuasion where the
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sender has multiple communication channels and the receiver neglects their corre-

lation. The key difference is that in our model, the sender can vary the composite

dictionary with the message he submits.

This assumption, as well as the assumption in Sections 2-4, are both special cases

of the maximum entropy principle (which dates back to Jaynes (1957), and is ap-

plied in Spiegler (2018) in a similar context of games with players who extrapolate

a belief from partial data). The principle states that given partial data regarding

an underlying joint probability distribution, the extrapolated subjective belief max-

imizes (Shannon) entropy subject to being consistent with the available data. The

maximum-entropy principle can be regarded as a single organizing modeling assump-

tion for generalizations of our model - as we will see again in Section 5.3.

Do composite dictionaries empower the sender? SupposeK is even, and recall the

strategy outlined in Theorem 1, which attains full persuasion when π ≥ 1/(1 + S).

Suppose the sender deviates from this strategy by splitting each of these dictio-

naries into its constituent singletons (without changing the conditional distribution

over messages). Can this new strategy achieve full persuasion for π < 1/(1 + S)?

There are two conflicting forces. On the one hand, splitting dictionaries into their

constituent singletons highlights patterns that are more frequent in state N . For

example, σ(m1 = 1 | θ = N) ≥ σ(m1 = m2 = 1 | θ = N). This force lowers the

subjective likelihood ratio associated with reports in state N . On the other hand,

splitting dictionaries creates a correlation-neglect effect that makes the combination

of these individual patterns appear more informative of state Y than they really are.

Recall that in state Y , m1 = m2 = 1 with probability one, whereas in state N , m1

and m2 sometimes take different values. By regarding these correlated message com-

ponents as independent, the receiver exaggerates the extent to which the realization

m1 = m2 = 1 is indicative of state Y .

Which of the two forces wins? Under the original strategy, each report in state N

induces a subjective likelihood ratio of S. Let us calculate the subjective likelihood

ratio of each report in state N under the new strategy. Since we kept the conditional

distribution over m unchanged, the probability of mk = 1 conditional on θ = N is

1/2 for every k = 1, ..., K. Moreover, every m that is played in state N has exactly
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K/2 1’s. Thus, the subjective likelihood ratio for each report in state N is

1

(1
2
)K/2

= 2K/2 < S

Therefore, the new strategy does not lead to better subjective likelihood ratios. We

conclude that the dictionary-splitting deviation does not help the sender, in the sense

that it cannot achieve full persuasion for a wider range of priors.

This calculation can be extended to any deviation that involves any pattern of

composite dictionaries, while retaining the same state-contingent distribution overm

as in the optimal strategy of Section 3. However, it remains an open question whether

there exists some strategy for the seller that utilizes a different conditional message

distribution and involves composite dictionaries, which outperforms the strategy of

Section 3. We conjecture that the answer is negative. If this is the case, the con-

clusion would be that selective interpretation is a more powerful form of persuasion

than leveraging correlation neglect.

5.2 Self-Referential Dictionaries

Although the sender’s strategy maps each state to a distribution over pairs of ele-

ments (message and dictionary), so far we assumed that the sender can only interpret

one of these elements - namely, the message. In this subsection, we propose a richer

notion of dictionaries that allows the sender to interpret the use of dictionaries as

well. This is a self-referential dictionary - it contains a description of the frequency

with which different types of dictionaries are employed in the various states.

To illustrate this notion, suppose that K = 1, such that the model of Section

2 collapses into the rational-expectations benchmark of Kamenica and Gentzkow

(2011) - i.e., the maximal probability of persuasion is 2π with commitment and

zero without. The set of available dictionaries is D = {Dmes, Ddic}. The sender’s
strategy is a function σ : Θ → ∆({0, 1} × D). When the receiver obtains a report

(m,Dmes), he gets access to the conditional distribution (σ(m | θ))θ∈Θ, and therefore

draws inferences about θ exclusively on the basis of m. When he obtains a report
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(m,Ddic), he gets access to the conditional distribution (σ(D | θ))θ∈Θ, and therefore

draws inferences about θ exclusively on the basis of D.

To see how a self-referential dictionary can help the sender, consider the following

strategy. In state Y , the sender plays a single report (1, Ddic). In state N , he

randomizes uniformly between (1, Dmes) and (0, Ddic). When the receiver gets the

reports (1, Ddic) or (0, Ddic), he cannot interpret the message, yet the self-referential

dictionary Ddic enables him to draw an inference from the fact that he received

this particular dictionary. Specifically, the likelihood ratio of Ddic is 1/(1/2) =

2. Similarly, when the receiver gets the report (1, Dmes), he is only able to draw

inferences from the message. The likelihood ratio of m = 1 is 1/(1/2) = 2. It follows

that this strategy induces full persuasion whenever π ≥ 1
3
.

As this example demonstrates, allowing for self-referential dictionaries is akin to

adding a dimension to the message profile. Therefore, it increases the sender’s ability

to persuade the receiver. However, when K > 1, it does not enhance the probability

of persuasion by the same amount as adding a regular message dimension. Also,

utilizing it destroys the property that D ⊥ θ | m.

5.3 Dictionaries as Collections of Marginal and Conditional

Distributions

So far, we assumed that dictionaries provide data about the distribution of vari-

ables conditional on θ. However, statistical data can involve other combinations

of marginal and conditional distributions. We build on the previous sub-section,

setting K = 1 and allowing for self-referential dictionaries. Let p denote the joint

distribution over θ,m,D induced by the prior over θ and the sender’s strategy.

Consider the following four primitive dictionaries, R1, R2, R3, and R4, where: R1

only gives access to the marginal distribution (p(m)); R2 only gives access to the con-

ditional distribution (p(m | θ)); R3 only gives access to the conditional distribution

(p(D | θ)); and R4 only gives access to the conditional distribution (p(D | θ,m)).

The set D of feasible dictionaries consists of all the subsets of {R1, R2, R3, R4}.
As elsewhere in the paper (and as made explicit in Section 5.1), assume that
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the receiver extrapolates an unconditional belief from the data he receives using the

maximum-entropy principle, and he uses this extrapolated belief to draw inferences

from the realized report. In particular, we will calculate the unconditional subjective

belief induced by four specific dictionaries. The dictionary {R1} induces the belief
p(θ)p(m) over θ,m; the dictionary {R2} induces the belief p(θ,m) over θ,m (in both

these cases, the receiver receives no data aboutD and therefore ignores this variable);

the dictionary {R3} induces the belief p(θ,D) over θ,D (in this case, the receiver

receives no data about m and therefore ignores this variable); finally, the dictionary

{R1, R4} induces the belief p(θ)p(m)p(D | θ,m) over θ,m,D. In each of these cases,

the receiver updates the extrapolated unconditional belief according to the realized

report.

It turns out that with this richer notion of dictionaries, the sender is able to

outperform the optimal strategy for K = 2 described in Section 3. Consider the

following strategy. In state Y , the sender randomizes between two reports: With

probability ε, he sends the report (1, {R1, R4}), and with the remaining probability
1 − ε, he sends the report (0, {R3}). In state N , the sender mixes between three
reports. With probability α, he sends the report (1, {R1, R4}); with probability β,
he sends the report (1, {R3}); and with the remaining probability 1−α−β, he sends
the report (0, {R2}).

Claim 5 For every π > 1
10

(
5−
√

5
)
, there exist α, β, ε ∈ (0, 1) such that the sender

attains full persuasion with the above strategy.

Proof. Consider the realized report (1, {R1, R4}). Recall that the receiver’s uncondi-
tional subjective probability of any θ,m,D that is induced by the dictionary {R1, R4}
is p(θ)p(m)p(D | θ,m). This subjective belief induces the following likelihood ratio

of the realized report (1, {R1, R4}):

p(D = {R1, R4} | m = 1, θ = Y )

p(D = {R1, R4} | m = 1, θ = N)
=

1
α

α+β

= 1 +
β

α

Now consider the realized report (1, {R3}). The dictionary R3 impels the receiver to

draw inferences from D only. Therefore, the subjective likelihood ratio of this report
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is
p(D = {R3} | θ = Y )

p(D = {R3} | θ = N)
=

1− ε
β

Finally, consider the realized report (0, {R2}). The dictionary R2 impels the receiver

to draw inferences from m only. Therefore, the subjective likelihood ratio of this

report is
p(m = 0 | θ = Y )

p(m = 0 | θ = N)
=

1− ε
1− α− β

In order to attain full persuasion, the three subjective likelihood ratios must all be

weakly greater than (1− π)/π. A straightforward calculation establishes that when-

ever π > 1
10

(
5−
√

5
)
, we can find α, β, ε that will satisfy these three inequalities. In

particular, ε will be arbitrarily small.

The lower bound on π that ensures full persuasion in this example is strictly

below 1
3
, which was the cutoff in the previous sub-section. This example shows that

(despite the impression that our conjecture at the end of Section 5.1 might create),

the basic notion of a dictionary given in Section 2 does entail a loss of generality.

Also, note that in contrast to the other sender strategies employed in this paper,

here full persuasion requires sending two distinct messages in state Y (although one

of them is played with arbitrarily small probability).

6 Another “Non-Bayesian Persuasion”Model6

An alternative approach to incorporating boundedly rational expectations in a per-

suasion game is to allow the sender to commit to a non-partitional information struc-

ture for the receiver. Non-partitional information structures violate the introspection

axioms that characterize the standard epistemic model of possibility correspondences

that underlies Harsanyi’s model of games with incomplete information (see Rubin-

stein (1998, Ch. 3)). In the present context, they mean that the receiver draws

correct statistical inferences from learning that a particular event has occurred, but

6The model presented in this section was inspired by insightful comments by Xiaosheng Mu. In
particular, he conjectured the optimal strategy that we describe in Proposition 1.
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makes no inference from the fact that other events have not occurred.

This alternative framework captures situations in which a third party - a biased

interpreter whose preferences are aligned with the sender’s - provides the receiver

with coarse datasets: When the sender sends a message m, the interpreter does

not explain to the receiver how likely that particular message is in each state; in-

stead, the interpreter poolsm with other messages and provides the receiver with the

conditional probability of receiving one of those messages. That is, the interpreter

strategically adds ambiguity to the meaning of a message. Because the receiver can-

not make inferences from the data he receives, the interpreter can manipulate the

receiver’s beliefs by pooling two distinct messages m and m′ with the same set of

messages (which induces a non-partitional information structure).

Formally, letM be a finite set consisting of n feasible messages. For everym ∈M ,
let I(m) be a collection of subsets I ⊆ M such that m ∈ I. The sender’s feasible
action set (independently of the state) is A = {(m, I) | m ∈ M, I ∈ I(m)}. The
meaning of an action (m, I) is that m is the sender’s actual message and I is the

receiver’s information set - i.e. he only learns that m ∈ I. The sender commits to
a strategy σ : Θ → ∆(A). Let σ(m, I | θ) denote the probability that the strategy
assigns to the action (m, I) in state θ. As before, σ(m | θ) =

∑
I σ(m, I | θ) is

the probability that the message m is played in θ. The receiver uses naive Bayesian

updating to form his posterior belief. That is, given the sender’s strategy σ, when

the action (m, I) is realized, the receiver’s posterior belief about the likelihood that

θ = Y is given by:

Pσ(m, I) =
π
∑

m′∈I σ(m′ | θ = Y )

π
∑

m′∈I σ(m′ | θ = Y ) + (1− π)
∑

m′∈I σ(m′ | θ = N)

The receiver’s subjective likelihood ratio of (m, I) is therefore

ρσ(m, I) =

∑
m′∈I σ(m′ | θ = Y )∑
m′∈I σ(m′ | θ = N)

The sender’s objective is to choose σ that maximizes the probability that the agent

chooses Y , subject to the constraint that the receiver’s action is optimal given his
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posterior belief.

Our original model of Section 2 can be equivalently described in terms of this

alternative model. Set M = {0, 1}K and define I(m) as the collection of all sets

I = {m′ | m′D = mD} for some D ⊆ {1, ..., K}. In contrast, the more elaborate
specifications of our model discussed in Sections 5.1 and 5.3 cannot be described in

this manner. The reason is that they make more complex use of maximum-entropy

extrapolation and cannot be described as naive Bayesian updating with respect to

an information set. This means that although the two models are equivalent for our

basic notion of dictionaries, they diverge when we consider more complex notions.

To better understand the restriction that our original formulation imposes on

I(m), we now solve for the maximal probability of persuasion when I(m) is unre-

stricted - i.e. it consists of all subsets I ⊆M that include m.

Proposition 1 Assume I(m) = {I ⊆M | m ∈ I} for every m ∈M .
(i) Let π ≥ 1/n. Then, the following strategy attains full persuasion. In state Y , the

sender plays (m1, {m1}) with probability one. In state N , he uniformly randomizes
over the n− 1 actions (m2, {m1,m2}), ..., (mn, {m1,mn}).
(ii) Let π < 1/n. Then, the maximal probability of persuasion is π(n − 1), im-

plemented by the following strategy. In state Y , the sender plays (m1, {m1}) with
probability one. In state N , he assigns probability π/(1− π) to each of the the n− 2

actions (m2, {m1,m2}), ..., (mn−1, {m1,mn−1}), and probability 1− (n− 2)π/(1− π)

to the action (mn, {m1,mn}).

Note that in this model, full persuasion is attained at significantly lower priors

than in the original model of Section 2, where n = 2K and yet full persuasion is only

attained for

π ≥ 1

1 +
(

K
bK/2c

) > 1

2K

However, the optimal strategy given by Proposition 1 lacks a natural interpretation,

whereas the optimal strategy in our original model can be described in terms of

selective interpretation of “good news”.
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6.1 Proof of Proposition 1

We first argue that the strategy σ outlined in the Proposition persuades the receiver

with probability one when π ≥ 1/n and with probability (n− 1)π when π < 1/n. To

see this, note that when π ≥ 1/n, then Pσ(m1, {m1}) = 1;

Pσ(mi, {m1,mi}) =
π(n− 1)

π(n− 2) + 1
≥ 1/2

for i = 2, . . . , n. When π < 1/n, then Pσ(m1, {m1}) = 1; Pσ(mi, {m1,mi}) = 1/2 for

i = 2, . . . , n− 1 and

Pσ(mn, {m1,mn}) =
π

1− (n− 2)π
< 1/2.

We now proceed to show that no other strategy achieves a higher probability of

persuasion. Let σ be an optimal sender strategy.

Observation 3 Without loss of generality, we can restrict attention to strategies
that accompany each message m with a unique information set I(m).

Proof. Suppose that the pairs (m, I), (m, I ′) are both played with positive proba-

bility under σ, such that I 6= I ′ and ρσ(m, I) ≥ ρσ(m, I ′). Let σ̂ be a strategy that

differs from σ only by replacing every occurrence of (m, I ′) with (m, I). Since the

deviation does not change the distribution of messages conditional on each state, it

leaves ρσ(m, I) and ρσ(m, I ′) unchanged, and it does not affect the likelihood ra-

tio of any other report. Therefore, the deviation weakly raises the probability of

persuasion.

Henceforth, we restrict attention to strategies in which each m ∈ M that is sent

with positive probability is paired with a unique information structure I(m). Define

J as the set of messages m for which

σ(m | θ = Y )

σ(m | θ = N)
>

1− π
π
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By the definition, the receiver would be persuaded by the pair (m, {m}) for every
m ∈ J . Since the sender can always select I(m) = {m}, it follows that ρσ(m, I(m)) ≥
(1− π)/π for every m ∈ J .

Observation 4 Without loss of generality, we can set I(m) = J ∪ {m} for every
message m that is sent with positive probability.

Proof. For any action (m, I(m)) that is played with positive probability and does

not persuade the receiver, it must be the case that ρσ(m, I) < (1 − π)/π for all

I ∈ I(m). Therefore, we can select I(m) = J ∪ {m} without loss of generality in
this case. It remains to show that ρσ(m, J ∪ {m}) ≥ (1− π)/π for every message m

for which ρσ(m, I(m)) ≥ (1− π)/π.

Let (m, I(m)) be an action that is played with positive probability and persuades

the receiver. Then,

π
∑

m′∈I(m)

σ(m′, I(m′) | θ = Y ) ≥ (1− π)
∑

m′∈I(m)

σ(m′, I(m′) | θ = N) (12)

Suppose, in contradiction to the claim, that I(m) 6= J ∪{m}. In particular, suppose
there is a message m̃ ∈ J − I(m). By the definition of J ,

πσ(m̃, I(m̃) | θ = Y ) > (1− π)σ(m̃, I(m̃) | θ = N)

Adding these two inequalities, we get∑
m′∈I(m)∪{m̃} σ(m′, I(m′) | θ = Y )∑
m′∈I(m)∪{m̃} σ(m′, I(m′) | θ = N)

>
1− π
π

Therefore, we can add m̃ to I(m) and the action (m, I(m)∪{m̃}) will still persuade
the receiver.

Now suppose there is a message m̂ ∈ I(m)− J . By the definition of J ,

πσ(m̂, I(m̂) | θ = Y ) ≤ (1− π)σ(m̂, I(m̂) | θ = N)

44



Subtracting this inequality from (12) and rearranging, we get∑
m′∈I(m)−{m̂} σ(m′, I(m′) | θ = Y )∑
m′∈I(m)−{m̂} σ(m′, I(m′) | θ = N)

≥ 1− π
π

Therefore, the receiver would also be persuaded by the action (m, I(m)− {m̂}).
We can repeat this process of adding or eliminating elements, until (m, I(m)) is

replaced with (m, J ∪ {m}) and the probability of persuasion is unchanged.

Observation 5 If σ is an optimal strategy, then J is non-empty.

Proof. If J = ∅, then by Observation 4 it is without loss to assume that each
message m is sent with {m}. Since such a strategy endows the receiver with rational
expectations, it implies that the maximal probability of persuasion is 2π. But then σ

cannot be optimal, since we have already identified a strategy that achieves a higher

probability of persuasion.

We are now ready to derive the upper bound on persuasion. Define H as the set

of messages m /∈ J that are played with positive probability such that (m, I{m})
persuades the receiver. Assume that I{m} = J ∪ {m} persuades the receiver. By
Observation 4 this is without loss. Then, for every m ∈ H, we have

ρσ(m, J ∪ {m}) =

∑
m′∈J∪{m} σ(m′, J ∪ {m′} | θ = Y )∑
m′∈J∪{m} σ(m′, J ∪ {m} | θ = N)

(13)

=

∑
m′∈J∪{m} σ(m′, J ∪ {m′} | θ = Y )∑

m′∈J σ(m′, J | θ = N) + σ(m, J ∪ {m} | θ = N)
≥ 1− π

π

Rearranging the inequality, we obtain an upper bound on the probability that the

action (m, J ∪ {m}) is played in state N :

σ(m, J ∪ {m} | θ = N) ≤ π

1− π
∑

m′∈J∪{m}

σ(m′, J ∪ {m′} | θ = Y )−
∑
m′∈J

σ(m′, J | θ = N)

≤ π

1− π −
∑
m′∈J

σ(m′, J | θ = N). (14)
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Note, that (14) is the same for everym ∈ H. Therefore, the probability of persuasion
in state N is bounded above as follows∑
m∈H∪J

σ(m, J ∪ {m} | θ = N)

≤ |H|

 π

1− π −
∑

m′|m′∈J

σ(m′, J | θ = N)

+
∑
m′∈J

σ(m′, J | θ = N)

≤ |H| π

1− π − (|H| − 1)
∑

m′|m′∈J

σ(m′, J | θ = N). (15)

By definition of J we have σ(m′, J | θ = N) < π/(1−π). This implies that the upper

bound on persuasion is increasing in |H| and thus decreasing in σ(m′, J | θ = N) for

every m′ ∈ J when n > 2. By Observation 5, |H| ≤ n− 1 since J 6= ∅. Furthermore,
if there exists an action that does not persuade the receiver, then |H| ≤ n− 2. This

will always be the case when (n− 1)π/(1− π) < 1.

It follows that the upper bound on the overall probability is

π + (1− π)(n− 1) π
1−π when π ≥ 1

n

π + (1− π)(n− 2) π
1−π when π < 1

n

This completes the proof.

7 Conclusion

Conventional models of strategic communication focus on the role of selective trans-

mission of information. And yet, real-life communication also involves strategic in-

terpretation of information. This paper formalized this aspect as selective provision

of statistical data regarding the long-run mapping between messages and the un-

derlying state. In a pure persuasion model, we showed that strategic interpretation

significantly enhances the sender’s ability to persuade the receiver - to the point that

full persuasion is sometimes possible, in sharp contrast to the standard rational-

expectations benchmark. From a broader perspective, the modeling innovation in
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this paper is the idea that one player can influence another player’s understanding

of equilibrium regularities, by affecting the statistical data regarding the equilibrium

distribution that the latter player has at his disposal. To use the terminology of

Spiegler (2018), one player can influence another player’s “archival information” -

just as in a standard model, one player’s information set is determined by the prior

moves of other players. Exploring this idea outside the context of strategic commu-

nication is an interesting problem for future research.

Related literature

Our paper joins a recent small literature on persuasion that departs from the stan-

dard paradigm of rational expectations under a common prior. De Barreda et al.

(2018) study a sender-receiver model in which the receiver exhibits “correlation ne-

glect”. Specifically, the sender submits multiple simultaneous signals and the receiver

erroneously treats them as being conditionally independent. In Section 5, we show

how to map this setting into the language of our model, such that the correlation-

neglect effect arises from the use of a particular notion of dictionaries. Galperti

(2018) analyses a model of persuasion with non-common priors, where the sender

can influence the prior beliefs held by the receiver. In particular, when the receiver

observes a message realization that has zero probability according to his prior belief,

he abandons his original prior in favor of a new one. We, on the other hand, main-

tain the common prior assumption but allow the sender to strategically determine

the receiver’s understanding of the equilibrium distribution.

The basic specification of dictionaries that we employ in Sections 2-4 forms a close

link to Jehiel’s (2005) notion of analogy-based expectations equilibrium (ABEE). Ac-

cording to this concept, players form coarse beliefs that are measurable with respect

to an “analogy partition”of the possible states of the world. Our basic notion of a

dictionary as a subset of components of multi-dimensional messages implies that a

dictionary is essentially an analogy partition. Therefore, this version of the model

can be viewed as an extensive game in which the sender chooses the message as well

as the receiver’s analogy partition, and the solution concept is ABEE. This tight

link to ABEE breaks down when we consider more elaborate notions of dictionaries

in Section 5. Relatedly, Jehiel (2011) studies mechanism design when determining
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agents’analogy partition is one of the designer’s instruments.

Spiegler (2018) introduces a general framework for static games, in which the

description of players’types includes “archival information”, defined as partial access

to data about correlations among the variables that constitute the state of the world.

Dictionaries in our model are a form of archival information. Indeed, our model is an

example of how to extend the formalism of Spiegler (2018) to sequential games. Our

approach to modeling the receiver’s partial understanding of the equilibrium is also

related to Glazer and Rubinstein’s (in press) model of a “problem solver”. In their

model, a problem solver has partial understanding of the equilibrium: he observes

some summary statistic of the other players’strategies, and then best-replies to a

uniform belief over all the strategy profiles that are consistent with this statistic.

Finally, Glazer and Rubinstein (2012, 2014) study persuasion when the sender is

boundedly rational in the sense of having limited ability to misrepresent the state.

They show that a rational receiver can construct intricate disclosure mechanisms

that take advantage of this element of the sender’s bounded rationality Blume and

Board (2013) study cheap talk when the receiver has uncertain ability to distinguish

between distinct messages. In contrast to our framework, receivers in Blume and

Board (2013) have rational expectations and the sender is unable to influence their

interpretative abilities.
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