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1 Introduction

The canonical principal-agent model of contracting under asymmetric information assumes

that the agent knows the probabilistic consequences of all available actions. Formally, these

are defined by a production function p(y | a), where y is the contractible output and a the

agent’s action. Given the incentives provided by the contract, the agent chooses an action that

– according to this function – maximizes her expected payoff. However, in an organization,

p(y | a) is typically a complex object. It may reflect information that is unavailable to the

agent or that the agent cannot process due to cognitive limitations. Herbert Simon therefore

proposed that administrative behavior must be “boundedly rational” (Simon 1947, 1955).

In this paper, we examine a contracting framework in which the agent has boundedly ratio-

nal beliefs about the production function. She estimates p(y | a) based on data generated by the

true production process, the implemented action α∗, and a non-parametric subjective model R.

A model R is a collection of variables and causal relationships between these variables. This

model may be misspecified. For example, it may be “too simple” relative to the complexity of

the organization: empirical regularities that matter for the principal’s project may not appear

in R. The agent’s beliefs about p(y | a) will be denoted by pR(y | a;α∗). An equilibrium

contract implements action α∗ if it is optimal for the agent to choose α∗ under this contract

given her beliefs pR(y | a;α∗). We study the properties of the optimal equilibrium contract and

the implications of misspecifications in R for the principal-agent relationship.

To capture the agent’s limited understanding of her environment, we apply Spiegler’s

(2016) Bayesian network approach. As an illustration, consider the following example:

“Marketer Example.” The agent is a marketer whose job is to increase sales y.

One strategy to increase sales is to make cold-calls a ∈ {0, 1}, that is, calling

potential customers without prior consent. Making cold-calls increases the set of

customers x1 ∈ {0, 1} who know about the firm’s product, but also reduces the

firm’s reputation x2 ∈ {0, 1} since some customers are annoyed by being cold-

called. Both a larger customer set x1 and a better reputation x2 increase expected

sales. However, when choosing her action, the marketer does not take the firm’s

reputation into account. The only mechanism on her mind is that making cold-

calls enlarges the set of potential customers, and that more potential customers

translate into more sales.

The Bayesian network approach roughly works as follows in the marketer example.1 The

setting describes an “extended production function” p(x1, x2, y | a), i.e., a joint probability

1Missing technical details will be explained thoroughly in the next section.
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distribution over customer set, reputation and sales for any given action. This function captures

the objective model R∗ of the project: R∗ contains all relevant variables, a, x1, x2, y, and the

causal relationships between these variables. The agent’s subjective model R is a simplified

version of R∗ as it only contains the variables a, x1, y, and their causal relationships. Her

beliefs are derived by fitting R to the objective probability distribution, which is generated by

the implemented action α∗ and the extended production function p(x1, x2, y | a). Thus, the

different elements in the agent’s subjective model R are quantified using input from the true

data-generating process. Combining these elements yields the agent’s beliefs pR(y | a;α∗).

If R differs from R∗, the agent’s beliefs about p(y | a) may be biased, and both the incentive

compatibility and the participation constraint could in principle be affected by the bias. Our

first important observation is that a weak restriction on the agent’s subjective model guaran-

tees that the participation constraint is not affected. The agent correctly predicts the marginal

equilibrium distribution over output if she takes into account the correlation between any two

variables in R that have a joint influence on a third variable in R (Spiegler 2017). Formally,

this is the case if R is “perfect.” When R is perfect (as in the marketer example), the optimal

equilibrium contract does not exploit the agent in the sense that the agent’s expected payment

is below her reservation utility. In contrast, exploitation would typically occur if one directly

assumes biased beliefs, such as overconfidence (e.g., Kőszegi 2014). Importantly, a perfect R

ensures in many cases that there are no informational cues in the data the agent gathers on the

equilibrium path that could alert her about the misspecification in R. Therefore, misspecifica-

tions in the agent’s subjective model allow for sustainable belief biases. Throughout the paper,

we assume that the agent’s subjective model R is perfect.

A misspecification in the agent’s subjective modelR can change the incentive compatibility

constraint even whenR is perfect. In the marketer example, if the principal implements making

cold-calls, then, by not taking reputation into account, the agent overestimates the drop in sales

after deviation to not making cold-calls (i.e., she is “control optimistic”). This relaxes the

incentive compatibility constraint, so that the principal can implement cold-calls with fewer

incentives than if the agent had rational expectations. The principal then strictly benefits from

the simplification in the agent’s model.

However, a misspecification in R does not always affect the incentive compatibility con-

straint. We call the agent “behaviorally rational” if she correctly anticipates the produc-

tion function, or, formally, pR(y | a;α) = p(y | a) for all possible a and α, regardless of

the parametrization of the extended production function. We characterize a correspondence

H∗(R∗) that indicates for a given objective model R∗ the set of variables the agent must take

into account in her simplified subjective model R so that she is behaviorally rational. We

show that H∗(R∗) is often a strict subset of the variables from the extended production func-
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tion, and that the difference between a variable i ∈ H∗(R∗) and a variable j < H∗(R∗) can be

quite nuanced. Here is a very simple example: Consider a version of the marketer example

where making cold-calls has no effect on reputation (still, reputation is stochastic and influ-

ences sales). The objective model R∗ then has no link between action and reputation. The

agent is now behaviorally rational even if she does not take reputation into account. She cor-

rectly anticipates the production function even though she ignores the influence of reputation

on output.

The characterization of H∗(R∗) shows which variables matter for the agent’s beliefs. An

important interpretation of the objective model R∗ is that it captures the agent’s job, i.e.,

through which tasks, interactions, and decision-making powers she influences the final output.2

In the canonical contracting model, these aspects are immaterial since behavior is governed by

the production function p(y | a). In our framework, we can have two extended production

functions that give rise to the same “reduced-form” production function p(y | a), but that differ

in their causal model R∗, and hence in the extent to which simplifications affect pR(y | a;α∗).

One application of this finding is that we can examine which organizational features poten-

tially cause the agent to overestimate the productivity of her effort. As the marketer example

shows, this happens if the agent does not take into account a partial negative effect of her effort

on the output. There are several intuitive reasons why this may happen. Consider an agent

in a management position in which her effort influences the behavior of other workers (e.g.,

a group of telemarketers). If the agent does not understand the difficulties of their job (e.g.,

that telemarketing has a partial negative effect on sales through reputation), she overestimates

her subordinates’ – and hence her own – productivity. There are different instances where

this could happen: The agent may be a technical expert who is promoted into a management

position in which she oversees the actions of workers whose job she does not fully understand.

Alternatively, it may be the case that subordinates do not communicate the problems they face

to their managers (out of career concerns). These phenomena are usually discussed critically

in the management literature, but in our framework they advance the agent’s effort motivation

and hence benefit the principal.

When the agent’s subjective model R is misspecified so that the incentive compatibility

constraint is affected, this naturally impacts on the comparative statics of the optimal equilib-

rium contract. We revisit two predictions of the canonical contracting framework that received

considerable attention in the literature: the informativeness principle (e.g., Holmström 1979,

Chaigneau et al. 2019) and the trade-off between risk and incentives (e.g., Prendergast 2002,

Corgnet and Hernán-González 2019). In both cases, our framework provides explanations for

2For example, one can interpret R∗ as an adjusted depiction of the organizational chart of the principal’s
project. As the CEO the agent would influence his senior managers who in turn influence their subordinates’
behavior and so forth. A simplification in R then captures that the agent ignores a certain part of the organization.
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empirical phenomena that are at odds with these predictions.

First, the informativeness principle states that the optimal contract should condition on an

additional variable z if and only if it provides additional information about the agent’s action.

This is no longer true in our framework. We show that if R is such that the agent correctly

anticipates the joint distribution of z and y, and if in R variable z is a sufficient statistic of

variable y, the optimal equilibrium contract only conditions on z (even when according to the

objective model both y and z are informative about the agent’s action). For example, if the

agent does not take into account the correlation between her output z and the output of others

(induced by variations in the state of the economy), the optimal equilibrium contract only

conditions on z. Hence, it is incomplete and may reward the agent for windfall gains.

Next, the canonical contracting model suggests that there should be a negative relationship

between risk and incentives. If the variance in output increases through a mean-preserving

spread in p(y | a), the provision of incentives becomes more costly so that all else equal the

optimal contract offers fewer incentives. Again, this is no longer necessarily true if the agent’s

subjective model is misspecified. Instead, she may interpret an increase in risk as an increase

in the productivity of her effort. In this case, the incentive compatibility constraint is relaxed

when there is more risk so that there can be a positive relationship between risk and incentives.

Related Literature. Our basic model is the principal-agent framework introduced by Holm-

ström (1979) and Grossman and Hart (1983). In this framework, both principal and agent

know the production function p(y | a). There are different approaches to relax this assumption.

First, several contracting models directly assume that the agent’s beliefs about the produc-

tion function are biased, i.e., p̂(y | a) , p(y | a); see Fang and Moscarini (2005), Van den

Steen (2005), Gervais and Goldstein (2007), Santos-Pinto (2008), De la Rosa (2011), Saut-

mann (2007, 2013), Spinnewijn (2013, 2015). Specifically, this approach is used to model an

overconfident agent who overestimates the probability of good states and underestimates the

probability of bad states. This typically allows the principal to exploit the agent by paying

more after high high output and much less after low output, in which case the agent’s expected

payoff is below her reservation utility.

Second, a rich literature builds state-space models of “unawareness” (e.g., Dekel et al.

1998, Heifetz et al. 2006, 2013) and applies them to contract theoretical settings. Auster

(2013) examines a principal-agent model with an agent who is unaware of some potential

output levels y, which again implies that the contract is exploitative. Von Thadden and Zhao

(2012, 2014) assume that the agent is unaware of her available actions a, which relaxes incen-

tive compatibility when the principal implements the default action.

Third, in order to justify biased beliefs, several papers assume that the agent knows the link

between action and outcomes p(y | a), but derives anticipatory utility from optimistic beliefs.
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She therefore chooses beliefs p̂(y | a) that solve the trade-off between the losses from biased

decision-making and the gains from anticipation; see Bénabou and Tirole (2002), Brunner-

meier and Parker (2005), and Kőszegi (2006). For an organizational context, Bénabou (2013)

shows how the interaction between group members can make the suppression of bad news

a strategic complement, so that collective denial of adverse signals (“groupthink”) occurs in

equilibrium. Immordino et al. (2015) show that if the anticipatory utility is not too important,

the principal may provide incentives so that it is optimal for the agent to choose correct beliefs.

Relative to these literatures, our approach to boundedly rational expectations and contract-

ing is more conservative. The agent derives her beliefs from the true data-generating process,

as in the canonical model; she just may not take into account all empirical regularities that

matter for the principal’s project. The misspecification in the agent’s subjective model may

cause her to overestimate her productivity; however, under a weak technical restriction, she

still correctly anticipates the equilibrium distribution over output, which makes the belief bias

sustainable. The size of the belief bias does not depend on parameters of the agent’s person-

ality, but instead on the specification of the objective production process. Further, whether

there is scope for control optimism or not, depends on the agent’s function in the organization,

that is, on tasks and decision-making rights. Finally, our framework is portable to different

settings: For an agent with given subjective model R, it allows us to study how beliefs and

equilibrium contract vary in the production process and contracting environment.

We also contribute to the literature on Bayesian networks and directed acyclic graphs

(DAGs), which have been used extensively in the artificial intelligence literature. Moreover,

they are used as visual inspection tool when choosing explanatory variables, e.g., Shrier and

Pratt (2008). In these papers, DAGs are interpreted as a representation of causal relationships.

This viewpoint is also promoted by Pearl (2009) who provides a broad introduction to DAGs.3

In economics, Spiegler (2016, 2017) uses Bayesian networks to model agents with boundedly

rational expectations. DAGs provide a general method to capture a variety of different infer-

ence errors such as reverse causation and coarseness. We build on these insights and apply

them to contracting. Other recent papers use causal models to capture boundedly rational de-

cision makers in monetary policy (Spiegler 2019), political competition (Eliaz and Spiegler

2018), Bayesian persuasion (Eliaz et al. 2018), and decision theory (Schenone 2019).

The remainder of the paper is organized as follows. Section 2 describes our framework.

In Section 3, we examine how a misspecification in the agent’s subjective model affects the

contracting problem. In Section 4, we characterize when a misspecification leads to biased be-

liefs about the production function, and illustrate the implications of this characterization. In

Section 5, we analyze how simplifications in the agent’s subjective model affect the informa-

3For other general introductions to DAGs see, for example, Koski and Noble (2009).
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tiveness principle and the trade-off between risk and incentives. Section 6 concludes. Omitted

proofs and further results can be found in the Online Appendix.

2 The Model

We consider a standard principal-agent problem and combine it with the Bayesian network

model of boundedly rational beliefs, as introduced in Spiegler (2016).

Basic Framework. The principal proposes a contract (w(y), a), where w(y) ∈ W is the agent’s

wage conditional on the output y ∈ Y and a ∈ A the action that the principal wishes the agent

to choose. Let W be the set of possible incentive schemes, A ⊂ R a finite set of actions, and

Y ⊂ R a finite set of outputs. The agent can reject or accept the contract. If she rejects it, she

enjoys the outside option value Ū, while the principal earns zero. If she accepts the contract,

she chooses an action a ∈ A. Mixed action profiles are denoted by p(a) ∈ ∆(A). The agent’s

personal cost of choosing a is given by a function c(a). The action stochastically influences the

project’s output. The agent’s utility from wage w is given by the utility function u(w), which is

weakly concave and exhibits limw→−∞ u(w) = −∞. When the output is y and the agent’s action

is a, the principal’s payoff is V = y − w(y) and the agent’s payoff is U = u(w(y)) − c(a).

Causal Structure. We model the causal structure though which the agent’s action affects the

output y. Let N∗ = {0, ..., n} be the set of relevant project variables (or nodes). They comprise

the agent’s action and output, but may also include other variables. A generic realization of

variable i is given by xi ∈ Xi, where Xi is a finite set that contains at least two elements. Node

0 is the agent’s action (x0 = a, X0 = A) and node n is the output (xn = y, Xn = Y). We use

these labels interchangeably. The state is a vector x∗ = (x0, x1, ..., xn) and the set of all states is

X∗ = ×i∈N∗Xi. Let xS be the vector of variables in S ⊂ N∗.

Denote by p(x1, . . . , xn | a) the extended production function. For any action a ∈ A, it has

full support over X1 × ... × Xn. We represent its causal structure by an irreflexive, asymmetric

and acyclic binary relation R∗ over N∗, and denote it by the DAG R∗ = (N∗,R∗), see the graph

on the left in Figure 1 for an example. For two nodes i, j ∈ N∗ one may read iR∗ j as “node

i impacts on node j.” The set of nodes that influence i is defined, with abuse of notation, as

R∗(i) = { j ∈ N∗ | jR∗i}. Nothing influences the agent’s action, R∗(0) = ∅. The probability

distribution over states p(x∗) then naturally factorizes according to R∗ via the formula

p(x∗) =
∏
i∈N∗

p(xi | xR∗(i)). (1)

The “objective model” R∗ is one of the sparsest DAGs so that p(x∗) factorizes according to
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R∗. That is, R∗ contains conditional independence assumptions, and the extended production

function satisfies all of them.

Figure 1: An objective model R∗ (left) and the agent’s subjective model R (right).

Beliefs, Personal Equilibrium, and Equilibrium Contract. The agent has her own subjective

model R = (N,R), as, for example, the graph on the right in Figure 1. We assume that N is

a subset of N∗ and contains at least action a and output y, with R(0) = ∅ (the agent knows

that she does not receive any information prior to choosing her action). If R differs from R∗,

we say that the agent’s subjective model is misspecified. A simplification is a misspecification

where nodes from N∗ are missing in R, but the rest is unchanged, so that iR j for i, j ∈ N if and

only if iR∗ j (as in model R of Figure 1). We will mostly discuss the effects of simplifications,

but many results hold for general misspecifications. Denote by x = (xi)i∈N the state vector for

the agent’s subjective model and X = ×i∈N Xi. The agent fits her subjective model to the data

generated by p, so her beliefs factorize according to the formula

pR(x) =
∏
i∈N

p(xi | xR(i)). (2)

She chooses the prescribed action from the contract only if it maximizes her expected utility

given the wage scheme w(y) and her subjective beliefs pR(x). Since her action potentially in-

fluences her beliefs, we formalize the agent’s action choice as a personal equilibrium. For this,

define by pR(y | a′; p(a)) the agent’s belief about the distribution over output after choosing

action a′ when her subjective model is R and her personal equilibrium is p(a).

Definition 1. The action p(a) is a personal equilibrium at R and w(y) if for all actions a ∈ A

in the support of p(a) we have

a ∈ arg max
a′

∑
y∈Y

pR(y | a′; p(a))u(w(y)) − c(a),

where pR(y | a′; p(a)) = limk→∞ pR(y | a′; pk(a)) for all actions a′ ∈ A and a sequence

pk(a)→ p(a) of fully mixed action profiles.
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With the full support assumption, a fully mixed action profile ensures that all conditional

probabilities are well-defined, in particular, those at variables in R that are directly influenced

by a (such as variable 1 in the subjective model R of Figure 1). The definition requires that

equilibrium beliefs are the limit of a sequence of fully mixed profiles. A personal equilibrium

always exists in our framework; see Online Appendix A.1. We call a contract (w(y), p(a)) an

“equilibrium contract” if p(a) is a personal equilibrium at R and w(y). An optimal equilib-

rium contract is an equilibrium contract that maximizes the principal’s expected payoff. For

convenience, we denote beliefs by pR(y | a; a∗) when a pure action a∗ is implemented, and

pR(y | a;α) with p(a = 1) = α when we have a binary action set A = {0, 1}.

The proposed solution concept is static. The agent’s beliefs are derived from a probability

distribution that could be influenced by the action that the equilibrium contract implements.

One interpretation is that the agent is experienced and thus has data on how her action impacts

on the variables in her subjective model. An alternative interpretation is that there are (or have

been) many other agents in the organization who exchange data with their new colleague to

which she can fit her subjective model.

3 The Optimal Equilibrium Contract

In this section, we study the properties of the optimal equilibrium contract for a given extended

production function p(x1, ..., xn | a) and subjective model R. If (w∗(y), p∗(a)) is an optimal

equilibrium contract, then w∗(y), p∗(a) solve the maximization problem

max
w(y)∈W,p(a)∈∆(A)

∑
a∈A

∑
y∈Y

p(a)p(y | a)(y − w(y)) (3)

subject to the constraints

p(a) ∈ ∆(A) is a personal equilibrium at R and w(y), (IC)∑
a′∈A

∑
y∈Y

p(a′)[pR(y | a′; p(a))u(w(y)) − c(a)] ≥ Ū. (PC)

If the agent’s subjective model R equals the objective model R∗, the problem collapses to

the canonical principal-agent problem and can be solved as suggested by Grossman and Hart

(1983). We first find for each pure action a ∈ A the wage scheme w(y) that implements this

action at lowest possible cost. Then we choose the action-incentive scheme combination that

maximizes the principal’s profit. If the agent’s subjective model R differs from the objective

model R∗, we find the optimal equilibrium contract by applying the same procedure. However,

since the agent’s beliefs pR(y | a; p(a)) may depend on the implemented action p(a), the first
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step has to be done for all pure and mixed actions p(a) ∈ ∆(A).

Suppose the agent is risk-averse with unlimited liability, and the principal implements a

(possibly mixed) action p(a). The Kuhn-Tucker conditions for the principal’s problem are

then necessary and sufficient for an optimum. Choose any action a in the support of p(a). The

optimal incentive scheme is then characterized by the first-order condition

1
u′(w(y))

=
pR(y; p(a))

p(y)

 µ +
∑
a′∈A

λa′
pR(y | a; p(a)) − pR(y | a′; p(a))

pR(y; p(a))

 (4)

for all y ∈ Y , where µ and λa′ are the usual Lagrange multipliers for the participation and in-

centive compatibility constraint, respectively; p(y) =
∑

a∈A p(a)p(y | a) is the distribution over

output and pR(y; p(a)) =
∑

a∈A p(a)pR(y | a; p(a)) is the agent’s belief about the distribution

over output when her subjective model is R and the equilibrium action is p(a).

Equation (4) allows us to disentangle how a misspecification in Rmay change the contract-

ing problem. First, the PC is affected when the agent holds biased beliefs about the equilibrium

distribution over outcomes; see the first term on the right of equation (4). In Subsection 3.1,

we state a sufficient condition on R so that this belief is unbiased. Second, the IC may be

affected. Suppose the principal implements a pure action a and pR(y; a) = p(y). The ratio in

the squared brackets then becomes 1 − pR(y|a′;a)
pR(y|a;a) , in which case the optimal incentive scheme

depends on a likelihood ratio as in the canonical framework. Any difference between the con-

tracts under the subjective model R and the objective model R∗ is then driven by differences

between the objective and subjective likelihood ratios. In Subsection 3.2, we examine how

these differences may affect the optimal equilibrium contract.

3.1 Correct Expectations on the Equilibrium Path

We use a Bayesian network result from Spiegler (2017) that characterizes under what circum-

stances the agent’s beliefs over the output distribution are identical to the equilibrium output

distribution, so that pR(y; p(a)) = p(y) for all p(a) ∈ ∆(A). To this end, we introduce a few

definitions. A v-collider is a triple of nodes (i, j, k) such that iR j, kR j and there is no link

between i and k (neither iRk nor kRi is in R). The set of v-colliders of a DAG is called its

v-structure. A DAG is called perfect if it has an empty v-structure. A subset of nodes S ⊂ N

is a clique in R = (N,R) if iR j or jRi for any two nodes i, j ∈ S . For example, in the DAG R∗

from Figure 1, the set S = {1, 3, 4} is a clique, while the set S ′ = {2, 3, 4} is not. Each node

is a clique in itself, so the output node n is a clique. As for the output y we define, for any

clique S ⊂ N, p(xS ) =
∑

a∈A p(a)p(xS | a), and pR(xS ; p(a)) =
∑

a∈A p(a)pR(xS | a; p(a)). The

following result essentially restates Proposition 2 from Spiegler (2017).



Equilibrium Contracts and Boundedly Rational Expectations 10

Proposition 1 (Equilibrium Beliefs). If the agent’s model R = (R,N) is perfect, her equilib-

rium beliefs satisfy pR(xS ; p(a)) = p(xS ) for all p(a) ∈ ∆(A) and any clique S ⊂ N.

If the agent’s subjective model R is perfect, then in a personal equilibrium, the agent cor-

rectly anticipates the marginal distribution over each variable in her model, and also the joint

distribution over variables in cliques. The intuition behind this result is that perfectness ex-

cludes biased estimates due to neglect of correlation. Imagine two variables i, j that influence

a third variable k. Suppose that i and j are correlated, and that the agent treats them as uncor-

related. Through the application of the factorization formula (2), the agent may then obtain a

biased estimate of the marginal distribution p(xk). Perfectness implies that the agent always

checks for correlations between two variables i, j when, according to her subjective model,

they influence a third variable k. We obtain two useful corollaries from Proposition 1.

Corollary 1. If the agent’s model R = (R,N) is perfect and her equilibrium action is a pure

action a∗, her equilibrium beliefs satisfy pR(xS | a∗; a∗) = p(xS | a∗) for every clique S ⊂ N.

If the equilibrium contract implements a pure action a∗, the agent’s belief over the joint

distribution of any clique S conditional on her equilibrium action is correct. Corollary 1 is in

general not true if the equilibrium contract implements a mixed action p∗(a). While the agent

still gets the marginal equilibrium distribution over each variable right, her beliefs may also

exhibit pR(xi | a′; p∗(a)) , p(xi | a′) for an action a′ in the support of p∗(a). Thus, the agent’s

expected utility conditional on a′ may be biased, ER[u(w(y)) | a′; p∗(a)] , E[u(w(y)) | a′]. The

second direct implication of Proposition 1 is the following result.

Corollary 2. Suppose (w(y), p(a)) is an equilibrium contract. If R = (R,N) is perfect, the PC

is satisfied at this contract if and only if this is also the case under the objective model R∗.

If R is perfect, the incentive scheme has to satisfy the same participation constraint as

under the objective model. Thus, an agent with a misspecified – but perfect – model cannot be

exploited. Throughout the paper, we will assume that R is perfect. As we see next, this does

not imply that the principal cannot benefit from the agent’s misperception.

3.2 Incentive Effects

We examine how a misspecification in the agent’s subjective model R can change the equilib-

rium contract when R is perfect. By Corollary 2, only the incentive compatibility constraint

could then be affected by the misspecification. We examine a simple setting with two effort
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Figure 2: Objective model R∗ (left) and subjective model R (right) in the marketer example.

levels a ∈ {0, 1}, two output levels y ∈ {yL, yH} with yH > yL, and cost c(1) = c > c(0) = 0. The

probability of output yH increases in the agent’s effort.

Consider the marketer example from the introduction. Figure 2 shows the objective model

R∗ and the agent’s subjective model R. Node 1 is the set of customers who are informed

about the firm’s product. It can be small (x1 = 0) or large (x1 = 1). Node 2 is the firm’s

reputation, which can be bad (x2 = 0) or good (x2 = 1). The subjective model R captures that

the agent does not take reputation into account. For the objective probability distribution, we

use the parametrization p(xi = 1 | xR(i)) = βi +
∑

j∈R(i) β jix j for i ∈ {1, 2} and p(yH | x1, x2) =

β3 + β13x1 + β23x2. Making cold-calls increases the customer set, β01 > 0, and decreases

reputation, β02 < 0; the customer set x1 and reputation x2 have a positive influence on sales y,

β13 > 0 and β23 > 0. We obtain the following result.

Proposition 2 (Marketer Example). Consider the marketer example of this subsection.

(a) The simplification in the agent’s subjective model R relaxes the IC for α = 1.

(b) The optimal equilibrium contract implements α ∈ {0, 1}. If and only if effort costs c

are small enough, the optimal equilibrium contract implements α = 1 and the principal

strictly benefits from the simplification in the agent’s subjective model R.

Before we prove this result, we explain the intuition behind it and its implications. First,

consider statement (a). When the principal implements α = 1, the agent overestimates the

drop in expected output when she exerts low instead of high effort. According to her subjective

model R, the only effect of her action on the output occurs through the size of the customer

set x1; she does not take into account that a deviation to low effort would also have a positive

effect on expected reputation x2, which translates into a positive effect on expected output.

Formally, the IC under the objective model R∗ is

[β01β13 + β02β23] (u(w(yH)) − u(w(yL))) − c ≥ 0. (5)

The term in squared brackets is the effect of effort on output and contains the customer set
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channel β01β13 and the reputation channel β02β23. Under the subjective model R, this second

channel is missing, so that the IC that implements α = 1 becomes

β01β13 (u(w(yH)) − u(w(yL))) ≥ c. (6)

Since the effect of effort on reputation β02 is negative, the simplification in R relaxes the IC.

As long as α ∈ (0, 1), the reputation effect is partly reflected in p(yH | x1); the extent of this

depends on α since α affects the correlation between customer set and reputation.

Next, consider statement (b). The observation that the principal will implement a pure

action would be trivial in the canonical framework with rational expectations. This is not the

case here as the agent’s perceived effect of effort on output pR(yH | a = 1;α)−pR(yH | a = 0;α)

may vary non-monotonically in α. In the present setting, the perceived effect of effort on output

is maximal at α = 1, so that there is no reason for the principal to implement a mixed action.

At the end of this subsection, we present an example where the unique optimal equilibrium

contract indeed implements a mixed action α ∈ (0, 1).

Importantly, if the agent chooses a pure action, then, by Corollary 1 and the fact that R

is perfect, she correctly anticipates the joint distribution over all variables in R conditional on

her equilibrium action. Thus, in the data that the agent gets under the optimal equilibrium

contract, there are no informational cues which could alarm her about a misspecification in

her subjective model. This is a crucial difference between the present framework and models

where beliefs over outcomes are biased for equilibrium actions.

Finally, the last part of statement (b) spells out that the principal strictly benefits from the

simplification in R when effort costs are small enough so that it is profitable to implement high

effort. The principal would have no incentive to correct the agent’s view on the production

process (if this were possible). This is of course not true in general. For example, if the agent’s

action has a positive effect on reputation, β02 > 0, the simplification in R tightens the IC for

α = 1 as the agent does not take all positive effects of her action on output into account.

Proof of Proposition 2. To illustrate our approach, we present the proof of Proposition 2.

We first derive pR(yH | a;α) for a given mixed equilibrium action α ∈ (0, 1). The agent’s

equilibrium beliefs about the joint probability distribution of the variables in R is given by

pR(a, x1, y) = p(a)p(x1 | a)p(y | x1). Since node 0 and node 1 form an ancestral clique,

p(x1 | a) is independent of α and we have p(x1 = 1 | a) = β1 + β01a. However, p(y | x1)

depends on α since the distribution over y also depends on x2. To get p(y | x1), we first derive

p(x2 = 1 | x1), i.e., the probability that x2 = 1 given that value x1 is observed at node 1 when
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the agent’s equilibrium action is α. We get

p(x2 = 1 | x1 = 1) =
α(β1 + β01)(β2 + β02) + (1 − α)β1β2

β1 + αβ01
, (7)

p(x2 = 1 | x1 = 0) =
α(1 − β1 − β01)(β2 + β02) + (1 − α)(1 − β1)β2

1 − β1 − αβ01
. (8)

With this we can calculate the equilibrium probability that output yH realizes after observing

x1 = 1 and x1 = 0, respectively:

p(yH | x1 = 1) = β3 + β13 +
α(β1 + β01)(β2 + β02) + (1 − α)β1β2

β1 + αβ01
β23, (9)

p(yH | x1 = 0) = β3 +
α(1 − β1 − β01)(β2 + β02) + (1 − α)(1 − β1)β2

1 − β1 − αβ01
β23. (10)

From pR(a, x1, y) we can now calculate the agent’s subjective probability of a high output after

high and low effort, respectively:

pR(yH | a = 1;α) = (β1 + β01)p(yH | x1 = 1) + (1 − β1 − β01)p(yH | x1 = 0), (11)

pR(yH | a = 0;α) = β1 p(yH | x1 = 1) + (1 − β1)p(yH | x1 = 0). (12)

We then use these terms to compute the IC for α ∈ (0, 1),

[pR(yH | a = 1;α) − pR(yH | a = 0;α)] (u(w(yH)) − u(w(yL))) = 0. (13)

Applying Definition 1, we obtain the IC for α = 1, which is the inequality in (6). Since

β02 < 0, this completes the proof of statement (a). To prove statement (b), note first that both

IC and PC must be binding at the optimal equilibrium contract. Simple calculations show that

β01, β13, β23 > 0 and β02 < 0 imply

pR(yH | a = 1;α) − pR(yH | a = 0;α) ≤ β01β13, (14)

for all α ∈ (0, 1]; that is, when the agent exerts high effort with positive probability, her

perceived effect of effort on output is largest at α = 1. The principal then cannot gain from

implementing a mixed action. Finally, given that the optimal equilibrium contract implements

either α = 0 or α = 1, the last part of statement (b) follows from a simple comparison of

expected profits under the equilibrium contracts that implement these two actions. �

Mixed action example. We show by example that it is not always optimal for the principal to

implement a pure action. Consider again the marketer example. Assume that the agent is risk-

neutral, protected by limited liability so that w(y) ≥ 0, her outside option value is zero, and
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yL = 0. Suppose payoff parameters are such that the principal optimally implements α > 0.

Standard arguments show that w(yL) = 0, and that w(yH) is chosen so that the IC in (13) is

satisfied. The principal’s expected payoff from this contract is then

E[V] = [αp(yH | a = 1) + (1 − α)p(yH | a = 0)]
(
yH −

c
∆R(α)

)
, (15)

where ∆R(α) = pR(yH | a = 1;α)− pR(yH | a = 0;α) is the agent’s perceived effect of effort on

output. The slope of ∆R(α) at α = 1 is

d∆R(α)
dα

∣∣∣∣∣
α=1

= β01β02β23

(
β1

β1 + β01
−

1 − β1

1 − β1 − β01

)
. (16)

Let the agent’s action have a positive impact on both customer set and reputation, β01 > 0 and

β02 > 0. Then for β01 → 1−β1 the slope converges to minus infinity. Thus, if all else equal β01

is sufficiently close to 1 − β1, then, starting from α = 1, a small reduction in α reduces w(yH),

and in terms of profits, this reduction overcompensates the smaller probability of high output.

The optimal equilibrium contract then implements α ∈ (0, 1). Thus, when the agent is induced

to switch between periods of working hard and periods of shirking, her effort appears to her as

particularly important for the final output.

4 Behavioral Rationality

We learned in the previous section that a simplification in the agent’s subjective model may

bias her beliefs about the production function, so that the incentive compatibility constraint

is affected. However, does a simplification in R automatically imply that the agent’s beliefs

are biased? In this section, we find that the answer to it is negative. The agent may correctly

anticipate the true production function, i.e., pR(y | a; p(a)) = p(y | a) for all a ∈ A and

p(a) ∈ ∆(A), even when her subjective model R misses out variables from R∗. Specifically,

this statement can hold independent of the parametrization of the extended production function

as long as it factorizes according to the objective causal structureR∗. We then say that the agent

is “behaviorally rational.”

We characterize for given objective model R∗ when the agent is behaviorally rational, and

when her beliefs about the production function change if an (additional) node from N∗ is

dropped from her subjective model R. We will see that two extended production functions –

which involve the same set of nodes N∗ and may give rise to the same p(y | a) – can differ in

the extent to which simplifications affect the agent’s beliefs about p(y | a). This extent depends

on the “channels” in R∗ through which the agent’s action affects the output. Intuitively, they
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describe the agent’s role in the organization, that is, which components or behaviors of others

the agent affects directly or indirectly through her action. This allows us to identify several

processes in an organization that potentially cause the agent to overestimate the productivity

of her effort. We proceed as follows. In Subsection 4.1, we extend our marketer example to

illustrate the influence of the agent’s job on the scope for biased beliefs and control optimism.

In Subsection 4.2, we characterize when the agent is behaviorally rational and generalize the

main findings from Subsection 4.1.

4.1 The Agent’s Job and the Scope for Control Optimism

We examine the interaction between the agent’s job, model misspecification, and incentives.

Let the agent first work as an ordinary marketer whose job is to increase sales. This time,

making cold-calls is not part of her job. Her effort only has a (positive) effect on the customer

set. However, there is a group of employees engaged in telemarketing. Their effort – making

cold-calls – impacts on the customer set and the firm’s reputation in the usual manner. The

objective model R∗ on the left of Figure 3a represents the causal structure of this extended

production function. Throughout, we use our parametrization with binary outcomes at all

variables i ∈ N∗ and p(xi = 1 | xR(i)) = βi +
∑

j∈R(i) β jix j. The telemarketers either conduct cold-

calls or not, β1 ∈ {0, 1}; cold-calls have a negative effect on reputation, β13 < 0; the customer

set has a positive effect on reputation, β23 > 0.4 All formal proofs of this subsection are in

Online Appendix A.2.

Figure 3a: Objective model R∗ (left) when the agent works as ordinary marketer, and objective
model R∗∗ (right) when the agent works as “head of marketing.”

Imagine that the marketer neither takes into account the telemarketers’ operation nor the

firm’s reputation so that her subjective model is given by R on the upper-left of Figure 3b.

When choosing effort, she only considers how her action impacts sales through the size of the

customer set. Does this misspecification change incentives? The answer is negative. We can

show – using the results from the next subsection – that the agent’s subjective beliefs about the

4To simplify the discussion, we introduce the link between customer set and reputation. Moreover, we violate
our full support assumption by assuming p(x1 = 1) ∈ {0, 1}. Formally, we consider the limit case of p(x1 = 1) ∈
{ε, 1 − ε} when ε→ 0.
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production function are correct, so that pR(yH | a;α) = p(yH | a) for all a ∈ {0, 1} and α ∈ [0, 1].

Thus, given her role in the principal’s project (as captured by R∗), the subjective model R is

rich enough to produce correct predictions for off-equilibrium actions. The agent may ignore

important parts of the project and still act as if she were fully rational. The equilibrium contract

is then the same as in the canonical model.

Importantly, telemarketing still matters for the principal. The probability distribution over

sales depends on whether cold-calls are made or not. It is just not essential for the agent to take

the telemarketers’ activity into account when estimating how her action influences the output.

Is there any simplification that makes the agent overestimate the effectiveness of her effort,

such that the principal benefits from it? Again, the answer is negative. If the agent does not

take node 2 into account, she believes that her action has no consequences for the output. It

would then be impossible implement high effort. If only node 1 or only node 3 were missing in

her subjective model, the agent would again have correct beliefs about the production function.

Thus, there is no scope for control optimism when the agent works as ordinary marketer.

Figure 3b: Subjective models R (upper-left), R1 (upper-right), R2 (lower-left), R3 (lower-right).

Next, we alter the agent’s job by promoting her to “head of marketing.” Her action now

influences the telemarketers’ effort, for example, by motivating or inspiring the telemarketers.

Instead of p(x1 = 1) = β1, we now have p(x1 = 1 | a) = β1 + β01a. To keep things as close as

possible to the previous case, we assume β1 = 0 and β01 = 1.5 Hence, the agent needs to act in

order to get the telemarketers going. The objective model of the extended production function

is given by R∗∗ on the right of Figure 3a. How does a misspecification in the agent’s subjective

model now affect equilibrium beliefs and incentives in this environment?

5We show in the proofs for this subsection that our results do not depend on this assumption.
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Let us first assume that the agent has the same subjective model R as before. She neglects

both the telemarketer’s activity and the firm’s reputation. This of course is not realistic since as

“head of marketing” the agent should be aware of her subordinates’ basic activities; so we will

relax this assumption below. The misspecification now affects incentives. Under the objective

model R∗∗ the IC that implements high effort would be

[(β02 + β01β12)(β24 + β23β34) + β01β13β34](u(w(yH)) − u(w(yL))) ≥ c. (17)

In contrast, under the subjective model R this IC becomes

(β02 + β01β12)(β24 + β23β34)(u(w(yH)) − u(w(yL))) ≥ c, (18)

Thus, the simplification relaxes the IC. This occurs since the agent does not take the negative

influence of cold-calls on reputation into account. However, through the estimate of the link

between the agent’s action and the customer set, she implicitly takes into account her positive

influence on the telemarketers’ effort which in turn positively affects the customer set. There-

fore, by being promoted to a job where the agent also influences telemarketing, she starts to

overestimate her productivity. The principal benefits from this since the misspecification again

reduces the need to provide incentives.

The assumption that the agent does not include the telemarketer’s activity in her subjective

model seems a bit odd, given that she is the head of marketing. Therefore, let her subjective

model be given by R2 on the lower-left of Figure 3b. She now takes into account her influence

on the telemarketers, and that the telemarketers increase the customer base when exerting

effort. Does this inclusion correct, at least partly, the agent’s beliefs? It turns out that this is

not the case. The models R and R2 produce the same beliefs about the effectiveness of effort,

i.e., pR(yH | a;α) = pR2(yH | a;α) for all a ∈ {0, 1} and α ∈ [0, 1]. Thus, including more

variables does not necessarily make the agent more rational. This also holds for the models

R1 and R3 in Figure 3b. Note that R3 is almost equal to the objective model R∗∗. Only the

link between telemarketing and reputation is missing. Yet, all subjective models in this figure

produce the same beliefs. Thus, a small misspecification in the agent’s subjective model can

render several important variables as inessential for estimating the production function.

Proposition 3 (Scope for Control Optimism). Consider the job examples of this subsection.

(a) If the agent works as ordinary marketer (objective model R∗), the misspecification in R

has no effect on the IC and the optimal equilibrium contract is the same as under the

canonical model. There is no simplification that generates control optimism.

(b) If the agent works as “head of marketing” (objective model R∗∗), the misspecification in
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R generates control optimism and relaxes the IC; the subjective models R, R1, R2, and

R3 generate the same beliefs about the production function.

Proposition 3 illustrates how the agent’s job matters for optimal incentives. The two jobs

with objective models R∗ and R∗∗ may give rise to the same production function p(y | a),6 so

that incentives would be identical under rational expectations. However, effort motivation is

larger under the job with objective model R∗∗ when the agent’s subjective model is simpliefied

in a way that benefits the principal. The crucial difference between the jobs are the sets of

channels through which the action affects the output. In the next subsection, we will formally

define these channels.

The findings in Proposition 3 allow for several new interpretations. First, parts (a) and

(b) combined demonstrate that an agent’s degree of control optimism may be determined by

the nature of her job. In the example, the agent with misspecified model R was behaviorally

rational in her job as ordinary marketer, but overestimated the importance of her effort after

being promoted to “head of marketing” where she influences the actions of others. Thus, in our

framework, the agent’s control optimism is not caused by certain features of her personality,

but it is a consequence of her environment when her subjective model does not capture all

empirical regularities of this environment.

Second, part (b) offers a new perspective on the phenomenon that managers often do not

completely understand the difficulties that their rank-and-file workers face (e.g., Porter and

Nohria 2018). Specifically, this can happen when an individual worked as specialist in her

previous position, but then was promoted to a management position where she influences the

activity of individuals whose jobs she often does not fully understand. This lack of knowl-

edge is typically regarded as a problem since it may lead to conflicts or inefficient managerial

decisions. However, as our example shows, it also can have positive effects on effort motiva-

tion, in particular, when the agent does not take into account a partial negative effect of her

subordinates’ behavior on the final output, and she motivates this behavior through her action.

Third, what leads to control optimism in part (b) is the agent’s ignorance of the partially

negative consequences of her subordinates’ activity for the final output. Our framework does

not provide an explanation for why a certain node is in the agent’s subjective model or not.

However, in an organizational context, there can be good reasons why the agent only takes into

account the positive aspects of her subordinates’ activity. For example, subordinates may have

an incentive to communicate why their effort is effective, and at the same time be reluctant to

6Specifically, when we denote parameters for the job with objective model R∗ (R∗∗) with “∗” (“∗∗”) we only
have to select parameters so that β∗02(β∗24 + β∗23β

∗
34) = (β∗∗02 + β∗∗01β

∗∗
12)(β∗∗24 + β∗∗23β

∗∗
34) + β∗∗01β

∗∗
13β
∗∗
34.
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communicate the disadvantages of their activity.7 In terms of our example, the telemarketers

may know that cold-calls displeases some customers. However, they may not want to make

the agent aware of this, e.g., when having career concerns. Indeed, it is difficult for CEOs

to obtain unbiased information about what their subordinates to. Porter et al. (2004) find

that “[all] information coming to the top is filtered [...] Receiving solid information becomes

even more difficult because immediately upon appointment, the CEO’s relationships change.

Former peers and subordinates who used to constitute an informal channel [...] go on their

guard. Even those the CEO was closest to are wary of delivering bad news.”

4.2 A General Result on Behavioral Rationality

To obtain a general result on behavioral rationality, we first assume that the objective model

R∗ is perfect, and that the agent’s subjective model R is a simplification of R∗. Note that R

will then be perfect. No v-structure emerges if we take out nodes from a perfect R∗ and all

links attached to them. The assumptions on R∗ and R are not overly restrictive: Note that any

probability distribution p(x∗) factorizes according to some perfect DAGR∗. The assumption on

R is satisfied by almost all subjective models we consider in this paper. Below, we (partially)

extend our behavioral rationality result to imperfect objective models. All formal proofs for

this subsection are in Online Appendix A.3.

In the following, we characterize for any perfect R∗ the subset of nodes the agent needs to

have in her subjective model R so that she acts as if she had fully rational beliefs about the

production function. We formally define behavioral rationality.

Definition 2. An agent with subjective DAG R is behaviorally rational if, at any probability

distribution p(x) ∈ ∆(X) that factorizes according to R∗, we have pR(y | a; p(a)) = p(y | a) for

all a ∈ A and p(a) ∈ ∆(A).

We use the following definitions and results from the Bayesian network literature. Consider

any DAG R = (N,R). Its skeleton (N, R̃) is obtained by making the DAG undirected. We have

iR̃ j if and only if iR j or jRi.

Definition 3. Two DAGs R and G are equivalent if pR(x) ≡ pG(x) for every p(x) ∈ ∆(X).

Proposition 4 (Verma and Pearl 1991). Two DAGs R and G are equivalent if and only if they

have the same skeleton and v-structure.

7A large literature in organizational economics studies strategic information transmission in organizations
(e.g., Aghion and Tirole 1997). The models in this literature are built on the common prior assumption, i.e., all
parties have a correct prior of what other parties may know. This is not the case in our framework. The crucial
point here is that strategic communication may directly influence how the agent perceives the production process.
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Two different models produce the same beliefs if they share the same skeleton and the same

set of v-colliders. To illustrate, consider the two models in Figure 1. The DAGs R∗ and R are

not equivalent since they have different skeletons. Next, consider a DAG G that only differs

from R in Figure 1 in that the link between the nodes 1 and 4 is reversed. R and G then have

the same skeleton, but a different v-structure, so that they are not equivalent.

We need a few more definitions. A subset of nodes M ⊂ N is called ancestral in R if for

all nodes i ∈ M we have R(i) ⊂ M. A path τ of length d from node i to node j is a sequence

of nodes τ0, τ1, ..., τd so that τ0 = i, τd = j, and τh−1R̃τh for all h ∈ {1, ..., d}. The length of the

shortest path between i and j is called the distance between these nodes and denoted by d(i, j).

A path of length d is active if there is no h ∈ {1, ..., d − 1} so that τh−1Rτh and τh+1Rτh.

Define by E the set of DAGs in the equivalence class of R∗ in which the action node 0

is ancestral (nothing influences the agent’s action). In each of these DAGs, all active paths

between the action node 0 and any node i point towards i. Thus, the assumption that node

0 is ancestral pins down the direction of many links in a perfect DAG. We call such links

“fundamental links.” There is a close connection between fundamental links and the set of

nodes that can be removed while maintaining behavioral rationality.

Definition 4. Consider two nodes i, j ∈ N∗. If iG j for all G = (G,N∗) ∈ E, then the link iG j is

called fundamental link and denoted by iE j.

An intuition for fundamental links is that they capture empirically relevant directions of

causality (given agreement on the ancestral node). Specifically, they describe how the agent’s

action impacts on other variables. Consider R∗ from Figure 1. Since the action node is ances-

tral, the links pointing from node 0 to other nodes are fundamental (0R∗1, 0R∗2, and 0R∗3).

Thus, the two links pointing into the output node (1R∗4 and 3R∗4) also must be fundamental. If

we would turn around one of them, we would create a v-collider since there is no link between

node 0 and node 4. The remaining links 1R∗2, 1R∗3, and 2R∗3 are not fundamental. Below,

we present an algorithm that identifies all fundamental links in any perfect DAG R∗. For now,

we go a step further and consider sequences of fundamental links.

Definition 5. Let τ be an active path in R∗. Then τ is a fundamental active path if all the links

between neighboring nodes in τ are fundamental.

Fundamental active paths are what we so far called “channels.” Consider again R∗ from

Figure 1. The path τ = {0, 1, 4} is a fundamental active path since both links 0R∗1 and 1R∗4

are fundamental. In contrast, the active path τ′ = {0, 2, 3, 4} is not fundamental since the link

2R∗3 is not fundamental. We define the set of nodes that are part of at least one fundamental
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active path between the action and the output by

H∗(R∗) := {i ∈ N∗ | i is part of a fundamental active path between 0 and n in R∗}.

It turns out that the nodes in H∗(R∗) are exactly those nodes the agent needs to have in her

subjective DAG in order to be behaviorally rational, provided that her subjective DAG is a

simplification of R∗. We can prove this by finding a DAG G that is equivalent to R∗ and in

which there are no links pointing from nodes in N∗ \ H∗(R∗) to nodes in H∗(R∗). In this DAG,

the nodes that are not in H∗(R∗) have no influence on the output, so the agent can safely ignore

them. By Proposition 4, the agent correctly anticipates the production function if H∗(R∗) ⊆ N.

Proposition 5 (Behavioral Rationality). Let R∗ be a perfect DAG and let the agent’s subjective

DAG R be a simplification of R∗. The agent is behaviorally rational if and only if R contains

all nodes from H∗(R∗).

Proposition 5 implies that the agent does not necessarily have to take into account all

variables of her (potentially) complex environment in order to be behaviorally rational. In

particular, this holds independent of the parametrization of the extended production function.

For example, when p(x1, ..., x4 | a) factorizes according to R∗ in Figure 1, the agent can ignore

node 2 and still would behave as in the contracting model with common priors. The intuition is

that when H∗(R∗) ⊆ N, then the information captured through the variables in H∗(R∗) already

includes the probabilistic information from variables outside H∗(R∗). Conversely, if the agent’s

subjective model does not include all variables from H∗(R∗), she is not behaviorally rational. In

this case, we can find a parametrization of p(x1, ..., xn | a) such that the incentive compatibility

constraint is affected by the simplification in the agent’s subjective model R.

Next, Proposition 5 also shows that different misspecifications can have the same effect on

incentives. Consider the two models R1 and R2 from the job example in Figure 3b. The set

of nodes on fundamental active paths is the same for these two models, H∗(R1) = H∗(R2) =

{0, 2, 4}. This implies that the agent’s beliefs under these models are identical. Thus, it does

not matter for the equilibrium contract whether the agent ignores node 1, node 3, or both

nodes. Therefore, the ignorance about one channel of causality may render another channel

unimportant. A further interpretation is that two agents with different subjective models may

still have the same beliefs about the production function. We capture this result in a general

statement. Consider a DAG R = (N,R) and a subset Ñ ⊂ N. Denote by R[Ñ] = (Ñ, R̃) with

R̃ = (Ñ × Ñ) ∩ R the DAG R restricted on Ñ.

Corollary 3. Let R1 = (N1,R1) and R2 = (N2,R2) be two perfect DAGs. Suppose there
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exists a DAG R3 so that R[N1]
3 = R1 and R[N2]

3 = R2. If H∗(R1) = H∗(R2), then we have that

pR1(y | a; p(a)) = pR2(y | a; p(a)) for all a ∈ A and p(a) ∈ ∆(A).

Identification of fundamental links. We provide an algorithm that identifies H∗(R∗) in perfect

DAGs. Nodes that are connected by fundamental links in perfect DAGs exhibit characteristics

that are easy to identify.

Proposition 6 (Fundamental Links). LetR∗ be a perfect DAG and consider two adjacent nodes

i, j ∈ N∗. The link iR∗ j is fundamental if and only if at least one of the following conditions is

satisfied:

(a) we have d(0, i) = d(0, j) − 1;

(b) there exists a node k ∈ N∗ such that kEi and k < R∗( j).

From this result we can derive an algorithm that finds all fundamental links in a perfect

DAG R∗. Let the topological ordering of R∗ be such that every link is directed from an earlier

to a later node. Then find for each node i the distance to the action node, d(0, i). Links between

nodes of differing distance are fundamental links. Next, check the links between nodes i, j that

are of equal distance to the action node. Let Nd be the nodes that are at distance d to the action

node. Consider the smallest element of Nd, say i, and any j ∈ Nd with iR∗ j. A link iR∗ j is

fundamental if and only if there exists a node k so that there is a fundamental link from k to

i, but no link from k to j. Continue in this manner to evaluate all links between nodes in Nd,

going sequentially from the smallest to the largest node in Nd. Do this for all distances d > 0.

Figure 4: Example model R∗.

It is not always simple to spot the nodes that are not in H∗(R∗). In this case, Proposition 6

is helpful. Consider the perfect DAG R∗ in Figure 4. Condition (a) from Proposition 6 implies

that all links which connect nodes of different distances to the action node are fundamental.

The remaining links are 1R∗2, 3R∗4, 3R∗5, 4R∗5, 4R∗6, and 5R∗6. Condition (b) from Propo-

sition 6 then implies that 4R∗6 and 5R∗6 are fundamental links, while the remaining links are

non-fundamental. We therefore get H∗(R∗) = N∗ \ {3}.
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Imperfect objective models. In several applications, the objective model R∗ is imperfect. Nev-

ertheless, we can apply Proposition 5 to these models to detect nodes that can be dropped from

the agent’s subjective model while preserving behavioral rationality. Note that one can make

any imperfect DAG perfect by adding links between nodes that create v-colliders. If p is con-

sistent with R∗, it is consistent with any DAG that adds links to R∗. Consider a perfect DAG R̂

that is identical to the imperfect DAG R∗ except that it has additional links. Suppose all these

additional links disappear when we take out the nodes that are not in the agent’s subjective

model R = (N,R). Then from Proposition 5 we immediately get that the agent is behaviorally

rational if N contains H∗(R̂). We state this result formally.

Corollary 4. Let R∗ = (N∗,R∗) be the (possibly imperfect) objective DAG and R = (N,R)

the agent’s subjective DAG. The agent is behaviorally rational if there is a perfect DAG R̂ =

(N∗, R̂) with R̂[N] = R and R∗ ⊆ R̂, so that R contains all nodes from H∗(R̂).

Figure 5: Imperfect model R∗ and perfect model R̂.

As an illustration, consider the marketer example from Subsection 3.2 when the agent’s

effort has no impact on reputation, β02 = 0. The causal structure of this production function

is then given by the imperfect DAG R∗ on the left of Figure 5. The perfect DAG R̂ on the

right is identical, except that it has an additional link 1R̂2. In this model, node 2 is not on a

fundamental active path. Hence, the agent is behaviorally rational if her subjective model does

not take this node into account.

5 Comparative Statics

The canonical contracting framework produces some clear predictions about the shape of the

optimal contract: Holmström’s informativeness principle states which variables should be used

in an optimal contract; risk-aversion on the side of the agent implies that there should be a

negative relationship between risk and incentive provision. However, the empirical evidence

on these comparative statics often rejects these predictions. In this section, we consider the

informativeness principle (Subsection 5.1) and the risk-incentive trade-off (Subsection 5.2) in
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our framework, and examine to what extent misspecifications in the agent’s subjective model

can explain the empirical evidence.8

5.1 Observability and Incentives

An important question in contract theory is on which information the principal should condi-

tion the agent’s wage. Consider a setting with risk-averse agent and unlimited liability. For

this setting, the informativeness principle states that the optimal contract conditions on an ad-

ditional variable z if and only if it is informative about the agent’s effort, i.e., if and only if the

likelihood ratio p(y,z|a′)
p(y,z|a) varies in z for some y. However, relative to this benchmark, many actual

compensation contracts seem to use too little information. For example, they do not make use

of peer-performance and therefore reward CEOs for windfall gains (Bebchuk and Fried 2004).

The informativeness principle no longer holds when the agent’s subjective model R is mis-

specified. Suppose that R is such that the participation constraint is undistorted. Then it does

not matter whether z is informative about the agent’s effort, but it matters whether the agent

believes that variable z contains additional information about her effort. As an illustration,

consider the marketer example from Subsection 3.2 and assume that the principal can also

condition the agent’s wage on the size of the customers set x1. How does this affect the op-

timal equilibrium contract? If the agent had rational expectations, the optimal wage scheme

would condition both on the customer set x1 and sales y since neither variable is a sufficient

statistic of the other. In contrast, according to model R, sales y are just a noisy signal of the

size of the customer set x1. Recall that the agent overestimates the productivity of her effort

when the contract conditions on y. However, x1 is more informative about the agent’s effort

than y. The latter aspect turns out to dominate the former. Therefore, the optimal equilibrium

contract only conditions on x1 and appears as “incomplete.” This result can be generalized.

Proposition 7 (Observability and Incentives). Suppose the agent is risk-averse with unlimited

liability. Let z and y be two contractible variables. The optimal equilibrium contract does not

condition on y if the agent’s subjective model R satisfies the following conditions:

(a) pR(z, y; p(a)) = p(z, y) for all p(a) ∈ ∆(A), and

(b) a ⊥R y | z.

Below we provide the detailed proof. Condition (a) requires that the agent has correct

beliefs about the joint equilibrium distribution of y and z. By Proposition 1, it is satisfied if R

8Additionally, in Online Appendix A.5, we analyze the effectiveness of team incentives when the size of the
team becomes large, and the agent neglects the contributions of others to the output.
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is perfect, and y and z form a clique. This condition ensures that the participation constraint is

unaffected by the misspecification, so that optimal incentives only depend on likelihood ratios.

Condition (b) requests that, according to the agent’s model R, the output y is independent of

the agent’s action a, conditional on outcome z. This condition directly implies that, in the

agent’s mind, z is a sufficient statistic of y. In the marketer example, this is the case for y and

x1 since R(y) = {x1}.

Figure 6: Objective model R∗ (left) and subjective model R in the peer-comparison example.

As an application, consider the objective model R∗ on the left in Figure 6, and the agent’s

subjective model R. According to the objective model, the agent’s effort directly influences

sales z; the state of the economy x1 also influences sales z, and a “peer-comparison variable”

y which captures how good the agent’s sales z are relative to those of others. That is, the state

of the economy induces a correlation between the agent’s and others’ sales, which the optimal

contract under R∗ would exploit to better tailor the agent’s wage to her effort. However, by

Proposition 7, the optimal equilibrium contract under R does not make use of peer-information

as the agent does not take into account the confounding factor. Using peer-information in the

contract would only increase the risk-premium that the agent requires to accept the contract,

and would not have additional incentive effects. The equilibrium contract therefore is incom-

plete and may reward the agent for windfall gains that come from good states of the economy.9

Proof of Proposition 7. Suppose the principal wishes to implement p(a). For any action a in

the support of p(a) the optimal incentive scheme is characterized by the first-order condition

1
u′(w(y, z))

=
pR(y, z; p(a))

p(y, z)

 µ +
∑
a′∈A

λa′
pR(y, z | a; p(a)) − pR(y, z | a′; p(a))

pR(y, z; p(a))

 . (19)

9Using the results from Section 4, one can further examine which misspecifications lead to incomplete con-
tracts. For example, consider the following extension of this setting: The state of the economy x1 influences sales
z and rival sales x3. Sales and rival sales determine the peer-comparison variable y; the rest remains the same. We
obtain the same result as above if the agent’s subjective model R is identical to the objective model, except that
the link between state of economy x1 and rival sales x3 is missing (to see this, we only have to apply Corollary 4
to R). Hence, the agent may take into account that her sales are partially determined by the state of the economy.
Still, the optimal equilibrium contract is incomplete if she does not take into account that the state of the economy
also affects rival sales.
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From assumption (a) we get pR(y, z; p(a)) = p(y, z), and from assumption (b) we obtain that

for all a ∈ A we have pR(y, z | a; p(a)) = pR(z | a; p(a))p(y | z). Hence, we get

pR(y, z | a; p(a)) − pR(y, z | a′; p(a)) =
pR(y, z; p(a))
pR(z; p(a))

[pR(z | a; p(a)) − pR(z | a′; p(a))]. (20)

The first-order condition therefore simplifies to

1
u′(w(y, z))

= µ +
∑
a′∈A

λa′
pR(z | a; p(a)) − pR(z | a′; p(a))

pR(z; p(a))
. (21)

Since the right-hand side of this first-order equation is independent of y, the optimal incentive

scheme does not condition on y, which completes the proof. �

5.2 Risk and Incentives

Another important implication of the canonical contracting model is a trade-off between risk

and incentives. A risk-averse agent demands a risk premium for accepting a wage schedule

with uncertain wage payments. Thus, an increase in risk drives up the costs of providing

incentives. Consequently, the provision of effort incentives should decrease in the riskiness

of the environment. However, empirically this relationship does not hold in general (e.g.,

Prendergast 2002). Field evidence on the relationship between risk an incentives for CEO

compensation is mixed, and for other domains, such as franchising, a positive relationship

can be observed. In contrast, a negative relationship is obtained in lab experiments where

subjects know the true production function (e.g., Corgnet and Hernán-González 2019). In this

subsection, we continue our marketer example to show how the relationship between risk and

incentives may become positive when the agent has a simplified model of the project.

To study the relationship between risk and incentives, the literature typically uses a setting

with continuous actions, normally distributed output and exponential utility (so that the optimal

contract is linear). To properly apply our framework, we consider a setting with discrete

actions and outputs that captures the negative relationship between risk and incentives. Let

there be a binary action a ∈ {0, 1} and three equidistant output levels, yL, yM, yH with yL <

yM < yH. The level of risk is indexed by a variable ξ ∈ [0, ξ̄]. The production function is

p(yL | a) = βL(ξ) − βa, p(yM | a) = βM(ξ), and p(yH | a) = βH(ξ) + βa, where βL(ξ) = βH(ξ) for

all ξ. An increase in risk ξ shifts probability mass from the medium output yM to the extreme

outputs yL and yH, i.e., β′L(ξ) = β′H(ξ) = ε for some ε > 0 and β′M(ξ) = −2ε. The agent has a

piecewise linear utility function u(w) = w for w ≥ 0 and u(w) = λw with λ > 1 for w < 0; her

reservation utility is Ū = 0.

We now fit the marketer example from Subsection 3.2 to the present setting. The objective
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causal model is given by R∗ on the left of Figure 2, while the agent’s subjective model is given

by R on the right of this figure. We use our usual binary notation, except for the output. The

probability of low, middle and high output conditional on x1 and x2 is given by

p(yH | x1, x2) = βH
3 (ξ) + β13(ξ)x1 + β23(ξ)x2, (22)

p(yM | x1, x2) = βM
3 (ξ), (23)

p(yL | x1, x2) = βL
3(ξ) − β13(ξ)x1 − β23(ξ)x2. (24)

We assume that the level of risk ξ changes the importance of the size of the customer set and

the firm’s reputation for the final output. The larger the risk, the more important are these two

factors to obtain a high rather than a small output. We capture this by assuming

β13(ξ) = β̄13

(
1 +

ξ

β01β̄13

)
and β23(ξ) = β̄23

(
1 +

ξ

| β02 | β̄23

)
(25)

for two values β̄13, β̄23 > 0 with β01β̄13 + β02β̄23 = β. We choose the functions βH
3 (ξ), βM

3 (ξ) and

βL
3(ξ) so that the objective probability model generates the production function from above.10

Proposition 8 (Risk and Incentives). Consider the marketer example of this subsection.

(a) Under the objective model R∗ the expected wage that implements a = 1 increases in risk

ξ. Thus, there exists an interval [cL, cH] so that if c ∈ (cL, cH), then for some ξ∗ ∈ (0, ξ̄)

the optimal equilibrium contract implements a = 1 if ξ < ξ∗ and a = 0 if ξ > ξ∗.

(b) Under the subjective model R the expected wage that implements a = 1 decreases in risk

ξ if the slope β′L(ξ) = β′H(ξ) = ε is small enough. In this case, there exists an interval

[cL, cH] so that if c ∈ (cL, cH), then for some ξ∗ ∈ (0, ξ̄) the optimal equilibrium contract

implements a = 0 if ξ < ξ∗ and a = 1 if ξ > ξ∗.

The proof is in Online Appendix A.4. We explain why part (a) holds. When the agent has

rational expectations, the incentive compatibility constraint that ensures high effort equals

β(u(wH) − u(wL)) ≥ c. (26)

The optimal wage schedule that implements high effort is given by

w(yL) = −
1

2λβ
c, w(yM) = 0, and w(yH) =

1
2β

c. (27)

10Specifically, we derive βH
3 (ξ) and βL

3 (ξ) from βH(ξ) = βH
3 (ξ) + β1β13(ξ) + β2β23(ξ) and βL(ξ) = βL

3 (ξ) −
β1β13(ξ) − β2β23(ξ). Since βH(ξ) = βL(ξ) for all ξ, we have βM

3 (ξ) = 1 − 2[βH
3 (ξ) + β1β13(ξ) + β2β23(ξ)].
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Note that a change in risk ξ affects neither the optimal wage schedule, nor the incentive com-

patibility constraint in (26). In terms of incentives, the effect of risk on the importance of

the customer set and reputation cancel each other out. However, an increase in risk exposes

the agent to more variation in her wage, so that she requires a higher risk-premium. Hence,

when the principal implements high effort, his expected payment to the agent increases in risk.

Thus, for an interval of cost levels [cL, cH], if c ∈ (cL, cH), the optimal equilibrium contract

implements high effort if and only if the level of risk is sufficiently small, so that we obtain a

negative relationship between risk and incentives.

Next, consider part (b). If the agent does not take the reputation channel into account, an

increase in risk appears to her as an increase in the productivity of her effort, as the association

between customer set and sales becomes stronger. The incentive compatibility constraint that

ensures high effort now equals

β01β13(ξ)(u(wH) − u(wL)) ≥ c. (28)

Recall that β13(ξ) increases in ξ, so an increase in risk ξ relaxes this IC. The optimal wage

schedule that implements α = 1 is given by

w(yL) = −
βH(ξ) + β − β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
c, w(yM) = 0, and w(yH) =

βL(ξ) − β + β01β13(ξ)
(βH(ξ) + βL(ξ))β01β13(ξ)

c.

(29)

A change in risk now has two countervailing effects on the expected payment when the prin-

cipal implements high effort. It again increases the risk premium that the agent requires, but

it also relaxes the incentive compatibility constraint. Which effect dominates depends on the

probability model and the utility function. If the slope β′L(ξ) = β′H(ξ) = ε is small enough,

an increase in risk reduces the expected payment to the agent at all ξ ∈ [0, ξ̄]. We the obtain

a positive relationship between risk and incentives: For an interval of cost levels [cL, cH], if

c ∈ (cL, cH), the optimal equilibrium contract implements high effort if the level of risk is

sufficiently large, and low effort through a fixed wage otherwise.

6 Conclusion

In this paper, we applied Spiegler’s (2016) Bayesian network framework to analyze optimal

contracting when the agent forms beliefs about the production function based on a misspec-

ified model of the principal’s project. The objective causal model may be very complex. It

potentially contains empirical regularities that the agent does not consider due to cognitive

limitations or because they are never brought to the agent’s attention. An important feature
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of misspecifications is that they can bias beliefs while also being sustainable, in the sense that

the agent cannot detect them from the data she gathers on the equilibrium path. The principal

benefits from misspecifications if the agent does not take into account a partial negative effect

of her effort on the output. The agent then overestimates the productivity of her effort, which in

turn relaxes incentive compatibility. Whether such simplifications exist, depends on the agent’s

role in the organization, that is, through which channels her effort influences outcomes. For

example, a front-line worker may not fully understand the workings of the organization around

her, but still act as if she were fully rational. In contrast, a high-ranking manager, who affects

the output by influencing the behavior of many subordinates, overestimates her own productiv-

ity if she does not take into account the challenges that her subordinates face in their routines.

Thus, when the agent has a simplified model of the project, being control optimistic can be a

consequence of the agent’s job (and not necessarily of her personality).

The Bayesian network approach allows us to systematically study which variables matter

for the agent’s beliefs in a particular setting. Moreover, it is portable so that we can examine

how the optimal equilibrium contract varies in features of the contracting environment. As an

example, we revisited the informativeness principle and the risk-incentive trade-off. When the

agent has a misspecified model of the principal’s project, the predictions of the canonical con-

tracting model about the comparative statics in these domains may be violated: The agent may

interpret an informative variable as uninformative, in which case the optimal equilibrium con-

tract is incomplete. She may also interpret an increase in risk as an increase in the productivity

of her effort, in which case there can be a positive relationship between risk and incentives.

Throughout the paper, we focused on a simple contracting framework so that we can iden-

tify precisely how misspecifications in the agent’s model affect incentive contracts. Future

research can extend the framework by considering more advanced topics in organizational

economics, such as team incentives, relational contracts, strategic communication and dele-

gation. The Bayesian network approach offers a very disciplined tool to study the effects of

bounded rationality on organizations, and we think that our results are useful in this respect.
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A Online Appendix

A.1 Existence of a Personal Equilibrium

We show that a personal equilibrium exists at any admissibleR and w(y) ∈ W. Note that ∆(A) is

non-empty, compact, and convex. Define the best-response correspondence BR : ∆(A)→ ∆(A)

by

BR(p(a)) = arg max
p′(a′)∈∆(A)

∑
a′∈A

∑
y∈Y

p′(a′)[pR(y | a′; p(a))u(w(y)) − c(a)]. (30)

For every p(a) ∈ ∆(A) we have that BR(p(a)) is non-empty and convex. The latter state-

ment follows since any convex combination of pure actions that are optimal for the agent

is an element of BR(p(a)). Definition 1 and the factorization formula in (2) imply that the

agent’s beliefs pR(y | a′; p(a)) are continuous in p(a). Therefore, we also must have that∑
a′∈A

∑
y∈Y p′(a′)[pR(y | a′; p(a))u(w(y)) − c(a)] is continuous in p(a). Hence, BR(p(a)) is up-

per hemi-continuous. The existence of a personal equilibrium then follows from Kakutani’s

theorem.

A.2 Omitted Proofs from Subsection 4.1

We first derive the IC under the objective model R∗. The probability of high output after high

and low effort, respectively, are given by

p(yH | a = 1) = β4 + [β2 + β02 + (β1 + β01)β12]β24

+[β3 + (β1 + β01)β13 + (β2 + β02 + (β1 + β01)β12)β23]β34, (31)

p(yH | a = 0) = β4 + [β2 + β1β12]β24 + [β3 + β1β13 + (β2 + β1β12)β23]β34, (32)

so that the effect of effort on the probability of high output equals

p(yH | a = 1) − p(yH | a = 0) = (β02 + β01β12)(β24 + β23β34) + β01β13β34. (33)

Next, we drive the IC under the subjective model R when the equilibrium action is α ∈ [0, 1].

We calculate

p(x1 = 1 | x2 = 1;α) =
α(β1 + β01)(β2 + β02 + β12) + (1 − α)β1(β2 + β12)

β2 + β1β12 + α(β02 + β01β12)
, (34)

p(x1 = 1 | x2 = 0;α) =
α(β1 + β01)(1 − β2 − β02 − β12) + (1 − α)β1(1 − β2 − β12)

1 − β2 − β1β12 − α(β02 + β01β12)
, (35)
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and

p(x3 = 1 | x2 = 1;α) = β3 + p(x1 = 1 | x2 = 1;α)β13 + β23, (36)

p(x3 = 1 | x2 = 0;α) = β3 + p(x1 = 1 | x2 = 0;α)β13. (37)

The agent’s belief about the probability of high output after x2 = 1 and x2 = 0, respectively, is

therefore given by

pR(yH | x2 = 1;α) = β4 + β24 + [β3 + p(x1 = 1 | x2 = 1;α)β13 + β23]β34, (38)

pR(yH | x2 = 0;α) = β4 + [β3 + p(x1 = 1 | x2 = 0;α)β13]β34. (39)

Since pR(x2 | a;α) = p(x2 | a) for all a ∈ {0, 1} and α ∈ [0, 1], the agent’s belief about the

effect of effort on the probability of high output under R equals

pR(yH | a = 1;α) − pR(yH | a = 0;α) = (β02 + β01β12)(β24 + β23β34) + (β02 + β01β12)β13β34

× [p(x1 = 1 | x2 = 1;α) − p(x1 = 1 | x2 = 0;α)].

(40)

Recall that β13 < 0. By comparing (33) and (40) we get that at α = 1 the misspecification in R

relaxes the IC if and only if

β01 >
β12(β1 + β01)(1 − β1 − β01)(β02 + β01β12)

(1 − β2 − β02 − β12(β1 + β01))(β2 + β02 + β12(β1 + β01))
, (41)

which implies the statement in the main text.

Proof of Proposition 3. We prove the statement in (a). Since β1 ∈ {0, 1}, we can rewrite the

probability model without variable 1. The corresponding objective model R̃∗ equals R∗ in

Figure 3a without node 1. We now apply Propositions 5 and 6. In model R̃∗, node 3 is not on

a fundamental active path. Hence, the agent with subjective model R is behaviorally rational

which yields the result. We prove the statements in (b). The first statement is shown in the

text. The second statement follows from Corollary 3. Note that in all models the set of nodes

on fundamental active paths is identical. �

A.3 Omitted Proofs from Section 4.2

We first prove Proposition 6 and then Proposition 5. To this end, we prove several intermediate

results. We first note that in a perfect DAG R∗ the link iR∗ j is fundamental if the nodes i and j
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differ in their distance to the action node 0.

Lemma 1. Let i, j ∈ N∗ be adjacent nodes in R∗. If d(0, i) = d(0, j) − 1, then iE j.

Proof. First, suppose d(0, i) = 0 so that i = 0. Since node 0 is ancestral, we must have iG j

in every DAG G ∈ E. Next, suppose d(0, i) = d > 0. Since R∗ is perfect and node 0 is

ancestral, there exists an active path of length d from node 0 to node i. Denote by k the direct

ancestor of i on this path. There cannot exist a link between k and j, otherwise we would have

d(0, i) = d(0, k), a contradiction. Thus, we must have iGk in every DAG G ∈ E, otherwise we

would have a v-collider at node i. �

Lemma 2. Let i, j ∈ N∗ and iR∗ j. If there exists a node k ∈ N∗ such that kEi and k < R∗( j),

then iE j.

Proof. If there is a fundamental link from node k to node i, then iR∗ j implies that we cannot

have jR∗k. Otherwise, we would have a directed cycle. Node j and node k are therefore not

adjacent. Hence, if jGi in some DAG G ∈ E, there would be a v-collider at i, a contradiction.

�

The “if”-statement of Proposition 6 follows directly from Lemma 1 and Lemma 2. For the

“only if”-statement we need two more results. The first one provides a condition under which

a link is not fundamental.

Lemma 3. Let i, j ∈ N∗ \ {0} and iR∗ j. If R∗(i) ⊂ R∗( j), then the link between i and j is not

fundamental.

Proof. Consider the DAG G = (G,N∗) that is identical to R∗ except that it reverses the link

between i and j. The assumption R∗(i) ⊂ R∗( j) rules out that there are v-colliders in G. Assume

that there is a cycle in G. Since R∗ is acyclic, the cycle must contain jGi. Further, there must

exists a node k and a link kG j which is part of the cycle. Since R∗ is perfect, we must have

kR̃∗i. Assume first that we have kR∗i. Then jGi implies that kGi is not part of the cycle. Thus,

there must exist an active path τ of some length d so that τ0 = i and τd = k. But then there

is a cycle consisting of the link kGi and τ. This cycle also exists in R∗, a contradiction. Next,

assume that we have iR∗k. Since i , 0 and R∗(i) ⊂ R∗( j), there exists a node l with lR∗i and

lR∗ j. Since R∗ is perfect, we also must have lR̃∗k. The same applies to all l′ ∈ R∗(i). Hence,

starting from R∗, we can reverse the links between i and j as well as between i and k and obtain

a DAG G′ ∈ E. �
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The second result for the proof of the “only if”-statement of Proposition 6 demonstrates

that for each node i in a perfect DAG R∗ there exists a DAG G ∈ E in which there is no

non-fundamental link that points to i.

Lemma 4. For all nodes i ∈ N∗ there exists a DAG G ∈ E in which all non-fundamental links

adjacent to node i point away from i.

Proof. Let Nd be the set of nodes that have distance d > 0 to the action node 0. Denote by

N[κ]
d , κ = 1, 2, ..., the maximal subset of nodes that (i) are at distance d > 0 from the action

node 0 and (ii) are connected through non-fundamental links (i.e., for any two nodes i, j ∈ N[κ]
d

there exists a path between i and j consisting of non-fundamental links). Step 1. We show

that all nodes in a given set N[κ]
d have the same parents outside of N[κ]

d . Consider two nodes

i, j ∈ N[κ]
d that are connected through the non-fundamental link iR∗ j. By definition kEi for

each k ∈ R∗(i) \ N[κ]
d for each i ∈ N[κ]

d . Since R∗ is perfect, this implies that R∗( j) \ N[κ]
d ⊂

R∗(i) \ N[κ]
d . Since iR∗ j is non-fundamental, we also must have R∗(i) \ N[κ]

d ⊂ R∗( j) \ N[κ]
d so

that R∗(i) \ N[κ]
d = R∗( j) \ N[κ]

d . The result follows from the fact that, by assumption, all nodes

in N[κ]
d are connected through non-fundamental links. Step 2. Consider two links i ∈ N[κ]

d and

i′ ∈ N[κ′]
d with κ , κ′ that are adjacent. Assume w.l.o.g. that iR∗i′. By definition, iR∗i′ is a

fundamental link. Step 1 then implies that iE j′ for all j′ ∈ N[κ′]
d . Thus, there cannot exist nodes

j ∈ N[κ]
d and j′ ∈ N[κ′]

d so that j′R∗ j. Otherwise, we would have j′E j and j′Ei for all i ∈ N[κ]
d ,

a contradiction. Thus, there cannot exist nodes i, j ∈ N[κ]
d and i′, j′ ∈ N[κ′]

d such that iR∗i′ and

j′R∗ j. Step 3. Note that, since R∗ is perfect, by Lemma 1 all links between Nd and Nd+1 point

away from the nodes in Nd. Step 4. We now can prove Lemma 4. Take any node i ∈ N∗ and

assume w.l.o.g. that i ∈ N[κ]
d . Consider the DAG G[κ] = (N[κ]

d ,G[κ]) where G[κ] is identical to

R∗ restricted on N[κ]
d . Since R∗ is perfect, G[κ] also must be perfect. Corollary 1 from Spiegler

(2019) implies that there exists a DAG Q[κ] in which node i is ancestral and that is equivalent

to G[κ]. Choose such a Q[κ] and replace G[κ] in the original DAG R∗ by Q[κ]. Call the resulting

DAG Q∗. Step 1 implies that there are no v-colliders in Q∗, and Step 2 and 3 imply that there

are no cycles in Q∗, which proves the result. �

Proof of Proposition 6. The “if”-statement follows from Lemma 1 and Lemma 2. We prove

the “only if”-statement. Consider any two adjacent nodes i, j ∈ N∗ with iR∗ jand d(0, i) =

d(0, j). Suppose that for any node k ∈ R∗(i) with a fundamental link kR∗i we also have k ∈

R∗( j). By Lemma 4, we can find a DAG G ∈ E in which all non-fundamental links are turned

away from node i. In this DAG, we have G(i) ⊂ G( j). From Lemma 3 it then follows that the

link iR∗ j is not fundamental. This completes the proof. �

Before we can prove Proposition 5, we need two more results. We will use the following

definitions. A path τ of length d is directed if for any h ∈ {1, ..., d} we have τh−1Rτh on this
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path. For any DAG, the topological ordering is a sequence of nodes such that every link is

directed from an earlier to a later node in the sequence.

Lemma 5. Let M ⊂ N∗ \ H∗ be a set of nodes connected through non-fundamental links.

Suppose there are two nodes i, j ∈ H∗ with non-fundamental links to nodes in M. Then i and j

are adjacent.

Proof. Assume w.l.o.g. that i, j are on a fundamental active path between 0 and n (the argu-

ment for n + 1 is identical). As in the proof of Lemma 4, let Nd be the set of nodes that have

distance d > 0 to the action node 0. Let E(i) be the set of nodes k with kEi. By Lemma 1, there

is a d > 0 so that i, j ∈ Nd and M ⊂ Nd. By Lemma 2, we must have E(i) = E( j) since these

nodes are connected through non-fundamental links. Choose any node k ∈ Nd−1 with k ∈ H∗

and kR∗i. By Lemma 2, we also have kR∗ j. We can now choose two fundamental active paths

τ[i], τ[ j] from node 0 to node n so that (i) k ∈ τ[i] and k ∈ τ[ j], (ii) i ∈ τ[i] and j ∈ τ[ j], (iii) all

nodes on τ[i] and τ[ j] before k are identical, and (iv) there is not any node on τ[i] (τ[ j]) between

k and i (k and j). Since i, j ∈ H∗ this is possible. Now define by m[i]
1 (m[ j]

1 ) the last node on

τ[i] (τ[ j]) before node n; by m[i]
2 (m[ j]

2 ) the penultimate node on τ[i] (τ[ j]) before node n, and so

forth. Since R∗ is perfect, m[i]
1 and m[ j]

1 must be adjacent. Since m[i]
1 and m[ j]

1 are adjacent and

R∗ is perfect, m[i]
2 and m[ j]

2 must be adjacent, and so forth. If nodes i and j are both the t’th

node from n in τ[i] (τ[ j]), we are done. Assume that this is not the case, and that w.l.o.g. node

i is the t’th node from n while node j is the t′’th node from n, with t′ > t. Then i is adjacent

to m[ j]
t , and also to all nodes on τ[ j] between m[ j]

t and j (including j) through non-fundamental

links, otherwise there would be a contradiction to E(i) = E( j). �

The next result is crucial for the proof of Proposition 5. It shows that all nodes that are not

on a fundamental active path between action and outcome nodes can be made “unimportant”

in the sense that they have no impact on outcomes. Formally, this means that we can find a

DAG in E in which all links between one node in H∗ and one node in N∗ \ H∗ point towards

the node in N∗ \ H∗.

Lemma 6. There exists a DAG G∗ ∈ E such that in G∗ all links with one end in H∗ and the

other in N∗ \ H∗ point from H∗ to N∗ \ H∗.

Proof. The proof proceeds by steps. Step 1. Consider any maximal set M ⊂ N∗ \ H∗ of

nodes connected through non-fundamental links and let M+ ⊂ H∗ be the set of nodes that have

non-fundamental links to nodes in M. By Lemma 1, there is a d > 0 so that M,M+ ⊂ Nd.

Denote by M++ the set of nodes in Nd ∩ H∗ with fundamental links into M. Since the nodes

in M are connected through non-fundamental links, there is a fundamental link from any node
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i ∈ M++ to any node in M. Thus, any node in M++ must also be adjacent to any node in M+, so

M+ ∪ M++ is a clique. Step 2. Consider the DAG Ḡ = (N, Ḡ), where N = M ∪ M+ ∪ M++ and

Ḡ is identical to R∗ restricted on N. By construction, this DAG is perfect. Hence, Corollary

1 from Spiegler (2019) implies that there exists a DAG Ḡ+ in which the clique M+ ∪ M++ is

ancestral and that is equivalent to Ḡ. We choose such a Ḡ+ with the property that the ordering

of the nodes in M+ ∪M++ is the same as in Ḡ (this is possible since M+ ∪M++ is a clique, and

all links between nodes M+∪M++ and nodes in M point towards the latter one). Consider now

the DAG G that is identical to R∗ except that Ḡ is replaced by Ḡ+. We show that there are no

cycles or v-colliders in G so that it is equivalent to R∗. Consider any node i ∈ Nd−1 ∪ Nd that is

outside M∪M+∪M++ and that has a fundamental link into a node in M. Since the nodes in M

are connected through non-fundamental links, node i has a fundamental link into every node

in M (otherwise, i would belong to M, a contradiction). This rules out v-colliders. Any link

between a node in Nd and a node in Nd+1 points into the latter one. Hence, by construction,

there cannot be cycles or v-colliders in G. We obtain G∗ by performing the same changes for

any maximal set M ⊂ N∗ \ H∗ of nodes connected by non-fundamental links in R∗. �

Proof of Proposition 5. First, we show the “if”-statement. Assume that the agent’s subjective

DAG R is aware of all the nodes in H∗. Consider the DAG G∗ ∈ E in which all links with one

end in H∗ and the other in N∗ \ H∗ point from H∗ to N∗ \ H∗. By Lemma 6, this DAG exists.

From Proposition 4 it follows that pG∗(xH∗) = p(xH∗) for all distributions p ∈ ∆(X). Consider

the subgraph G = (G,N) where G equals G∗ restricted on N. Since none of the nodes in N \H∗

impacts on any node in H∗, we have pG(xH∗) = pG∗(xH∗) for all p ∈ ∆(X). By construction,

the DAGs R and G are equivalent so that we have pR(xH∗) = pG(xH∗) = pG∗(xH∗) = p(xH∗)

for all distributions p ∈ ∆(X), which proves the “if”-statement. Next, we show the “only if”-

statement. Assume that there is one node i ∈ H∗ that is not in the agent’s subjective model.

Assume w.l.o.g. that i is on a fundamental active path τ between the action node 0 and the

output node n. We find a probability distribution p ∈ ∆(X) so that pR(xn | x0) , p(xn | x0).

Let k be the k’th node in τ. Consider a probability distribution with the following properties:

p(x j | xR∗( j)) = p(x j) for all nodes j < τ that are between the nodes 0 and n, and p(xk | xR∗(k)) =

p(xk | xk−1). Clearly, such a distribution can have the desired property. �

Proof of Corollary 3. Denote H∗(R1) = H∗(R2) = H. By Proposition 5 there is a DAG R[1]
1

that is equivalent to R1 and in which all links between a node i ∈ H and node j ∈ N1 \ H is

turned away from i. Thus, we have

pR1(xH) =
∑

xN1\H∈XN1\H

pR1(xN1) =
∑

xN1\H∈XN1\H

p
R

[1]
1

(xN1) = p
R

[1]
1

(xH). (42)
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Note that foll all i ∈ H we have that R[1]
1 (i) ⊂ H. Consider the restriction of R[1]

1 on H, R[H]
1 .

We then have

p
R

[1]
1

(xH) =
∏
i∈H

p(xi | xR[1]
1 (i)) =

∏
i∈H

p(xi | xR[H]
1 (i)) = p

R
[H]
1

(xH). (43)

Define R[1]
2 and R[H]

2 just like R[1]
1 and R[H]

1 . By assumption, we have iR[H]
1 j ∈ R[H]

1 if and only

if iR[H]
2 j ∈ R[H]

2 or jR[H]
2 i ∈ R[H]

2 . Thus, R[H]
1 and R[H]

2 have the same skeleton. Since R1 and R2

are perfect, so are R[H]
1 and R[H]

2 . Hence R[H]
1 and R[H]

2 are equivalent, so that

p
R

[H]
1

(xH) = p
R

[H]
2

(xH). (44)

From the equations (42) to (44), we get pR1(xH) = pR2(xH), which implies the result. �

A.4 Omitted Proofs from Subsection 5.2

Proof of Proposition 8. We first prove statement (a). To this end, we derive the optimal con-

tract under the objective model R∗ that implements high effort. For convenience, we abbreviate

wH = w(yH), wM = w(yM), and wL = w(yL). Standard arguments show that both IC and PC

must be binding at the optimal contract, and that wL < 0 and wH > 0 at the optimum. Assume

for the moment that wM ≥ 0 under the optimal contract. The IC is then

β(wH − λwL) = c, (45)

and the PC equals

(βH(ξ) + β)wH + βM(ξ)wM + (βL(ξ) − β)λwL = 0. (46)

From the IC we get

wH =
c
β

+ λwL, (47)

We plug this into the PC, solve for wM, and get

wM = −
βH(ξ)
βM(ξ)β

c −
βL(ξ) + βH(ξ)

βM(ξ)
λwL. (48)

The expected wage payment of the principal when he implements a = 1 equals

E[w | a = 1] = (βH(ξ) + β)wH + βM(ξ)wM + (βL(ξ) − β)wL. (49)
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Using the results from above, the expected wage payment simplifies to

E[w | a = 1] = c − (βL(ξ) − β)(λ − 1)wL. (50)

The optimal wage wL minimizes this term subject to the constraint that wM in (48) remains

weakly positive. The solution implies that wM = 0, and w(yL) = − 1
2λβc as well as w(yH) = 1

2βc.

We obtain the same result when we go through the same steps while assuming wM ≤ 0. With

this we can compose the expected wage payment E[w | a = 1] and obtain

∂E[w | a = 1]
∂ξ

=
ε

2β
c −

ε

2λβ
c > 0. (51)

Hence, the expected wage payment to implement a = 1 strictly increases in risk. The expected

wage payment to implement a = 0 is zero for all risk levels. This yields us statement (a).

Next, we prove statement (b). We first derive the agent’s beliefs about the production function

at α = 1. As in the proof of Proposition 2, we find p(x2 = 1 | x1 = 1) and p(x2 = 1 | x1 = 0).

At α = 1, we have p(x2 = 1 | x1 = 1) = p(x2 = 1 | x1 = 0) = β2 + β02, and thus

p(yH | x1 = 1) = βH
3 (ξ) + β13(ξ) + (β2 + β02)β23(ξ), (52)

p(yH | x1 = 0) = βH
3 (ξ) + (β2 + β02)β23(ξ), (53)

p(yM | x1 = 1) = βM
3 (ξ), (54)

p(yM | x1 = 0) = βM
3 (ξ), (55)

p(yL | x1 = 1) = βL
3(ξ) − β13(ξ) − (β2 + β02)β23(ξ), (56)

p(yL | x1 = 0) = βL
3(ξ) − (β2 + β02)β23(ξ). (57)

From this, we can derive the agent’s beliefs about the production function at α = 1 as

pR(yH | a = 1;α = 1) = βH
3 (ξ) + (β1 + β01)β13(ξ) + (β2 + β02)β23(ξ), (58)

pR(yM | a = 1;α = 1) = βM
3 (ξ), (59)

pR(yL | a = 1;α = 1) = βL
3(ξ) − (β1 + β01)β13(ξ) − (β2 + β02)β23(ξ), (60)

and

pR(yH | a = 0;α = 1) = βH
3 (ξ) + β1β13(ξ) + (β2 + β02)β23(ξ), (61)

pR(yM | a = 0;α = 1) = βM
3 (ξ), (62)

pR(yL | a = 0;α = 1) = βL
3(ξ) − β1β13(ξ) − (β2 + β02)β23(ξ). (63)
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At α = 1, the IC is therefore given by

β01β13(ξ)(u(wH) − u(wL)) ≥ c. (64)

The rest of the proof proceeds as in the proof of statement (a). Assume that at the optimal

equilibrium contract, we have wM ≥ 0. From the IC, we then get that at the optimal equilibrium

contract, we must have

wH =
c

β01β13(ξ)
+ λwL, (65)

and from the PC we then get that

wM = −
βH(ξ) + β − β01β13(ξ)

βM(ξ)β01β13(ξ)
−
βL(ξ) + βH(ξ)

βM(ξ)
λwL. (66)

With this, we can calculate the expected wage payment under the optimal equilibrium contract

that implements α = 1 as

E[w | a = 1;R] = c − (βL(ξ) − β)(λ − 1)wL. (67)

The optimal wage wL minimizes this term subject to the constraint that wM in (66) remains

weakly positive. The solution implies that wM = 0 as well as

wL = −
βH(ξ) + β − β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
c and wH =

βL(ξ) − β + β01β13(ξ)
(βH(ξ) + βL(ξ))β01β13(ξ)

c. (68)

We obtain the same result when we go through the same steps while assuming wM ≤ 0. With

this we can compose the expected wage payment at the optimal equilibrium contract as

E[w | a = 1;R] =
(λ − 1)(βH(ξ) + β)(βL(ξ) − β) + (λ + 1)β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
. (69)

We differentiate this expression with respect to risk ξ and find

lim
ε→0

∂E[w | a = 1;R]
∂ξ

= −
λ(λ − 1)(βH(ξ) + βL(ξ))(βH(ξ) + β)(βL(ξ) − β)

[λ(βH(ξ) + βL(ξ))β01β13(ξ)]2 < 0. (70)

Hence, if ε is sufficiently small, the expected wage payment needed to implement α = 1

decreases in risk ξ. The rest of the proof of statement (b) proceeds in the same way as for

statement (a). �
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A.5 Team Size and Incentives

In a team incentive problem, effort incentives are provided by tying each team member’s payoff

to the joint output y. The effectiveness of team incentives is constrained by the size of the

team. When an agent’s relative contribution to the output becomes small, it is typically no

longer profitable for the principal to condition her pay on y, as the incentive effect would be

outweighed by the costs of incentive provision (e.g., Kandel and Lazear 1992). An important

implication of this result is that stock-options should be granted only to those employees whose

actions significantly move the stock price. However, many firms grant stock options also to

non-executive employees, and there is evidence that these have positive incentive effects (e.g.,

Hochberg and Lindsey 2010). In the following, we provide a belief-based explanation for this

phenomenon. Specifically, we show that output-based incentives can remain effective in large

teams when agents do not take into account the contributions of others to the final output.

Team incentives and optimal project size. We consider a simple team setting in which the

principal chooses both incentives and the size of the team. Let there be m identical agents who

can choose between high and low effort a ∈ {0, 1}. We suppress notation for individual agents.

For convenience, we assume that agents are risk-neutral and protected by limited liability, so

that w(y) ≥ w̄ > 0 for all y ∈ Y . The project output is either large (y = yH) or small (y = yL).

The team size m scales these payoffs. We have yH = mθȳH and yL = mθȳL, for some θ ∈ (0, 1),

and normalize ȳL = 0. If the share k of agents exerts high effort, the probability of a high

output is kB+ D, where B,D are positive constants with B+ D < 1. Thus, as the team becomes

large, the relative influence of a single agent on the final output becomes small. The cost of

high effort for the individual agent is c and the cost of low effort is 0.

The principal chooses both team size m and agents’ incentives w(y). If he wishes to

implement high effort from m agents, the optimal wage scheme is a bonus scheme with

w(yH) = w̄ + mc
B and w(yL) = w̄. The principal’s profit is then given by

(B + D)
(
mθȳH −

m2c
B

)
− mw̄. (71)

Observe that w(yH) converges to infinity for m → ∞. As project size increases, it becomes

prohibitively costly to provide effort incentives, as an individual agent’s influence on the final

outcome becomes small. If the principal wishes to implement low effort from m agents, the

optimal wage scheme is a fixed-wage w(yH) = w(yL) = w̄ and the corresponding profit is

DmθȳH − mw̄. Denote by m[a](c) the optimal team size if the principal implements action

a ∈ {0, 1} and effort costs are given by c. This value is uniquely defined. We then get the

following result: There is a c∗ > 0 such that the principal optimally implements high effort
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with project size m[1](c) if c ≤ c∗, and low effort with project size m[0](c) if c > c∗.

Figure 7: The objective model R∗ and the agent’s subjective model R in the team size example.

Team incentives and optimal project size with misspecified model. We now consider an ex-

tended production function that is consistent with the production function indicated above,

and that allows us to study how team size and incentives change when agents do not take

their colleagues’ effort into account. Consider the objective model R∗ on the left of Fig-

ure 6. Node 0 is the effort of a single agent. We use the fact that all agents are symmet-

ric, and assume that each of the other m − 1 agents exerts high effort with probability αo.

Through her effort, the single agent affects an intermediate outcome x2 ∈ {0, 1}. Denote by

x3 ∈ {0, 1}m−1 the m − 1-dimensional vector of intermediate outcomes of all other agents. The

probability of high output increases linearly in the number of high intermediate outcomes,

p(yH | x2, x3) = β24x2 + β24 ‖ x3 ‖, where ‖ . ‖ is the sum of entries in a vector. There is a

common shock x1 ∈ {0, 1} that occurs with probability p(x1 = 1) = β1. It positively affects

each agent’s intermediate outcome, p(x2 = 1 | a, x1) = β02a + β12x1, where β02 + β12 < 1 and

β1β12 ≥
1
2 ; for any other agent, the probability of a high intermediate outcome is β02α

o if x1 = 0

and β02α
o + β12 if x1 = 1. We define B ≡ β02β24 with β24 =

β̄24
m for some β̄24, and D ≡ β1β12β̄24.

Thus, the production function is the same as above; optimal team size and incentives would

remain unchanged if the agents’ subjective model would be given by R∗. We assume now that

agents ignore the contributions of others. Let an agent’s subjective model be given by R on the

right of Figure 6. We then obtain the following result.

Proposition 9 (Team Size and Incentives). Consider the team size example of this section.

(a) Under the objective model R∗ there is a unique c∗ > 0 such that the principal optimally

implements high effort with team size m[1](c) if c ≤ c∗, and low effort with team size

m[0](c) if c > c∗.

(b) Under the subjective model R there is a unique c∗∗ > c∗ such that the principal optimally
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implements high effort with team size m[1]
R

(c) > m[1](c) if c ≤ c∗∗, and low effort with team

size m[0](c) if c > c∗∗.

Thus, whenever effort costs are small enough so that c ≤ c∗∗, the principal chooses a

team size that is “too large” for also tying the agents’ pay to the output. It then appears as if

incentives are provided to too many employees. However, as we show next, the simplification

in the agents’ subjective model causes them to overestimate the importance of their effort for

the final output, so that granting these incentives remains profitable for the principal.

We explain the intuition behind Proposition 9. According to R, if p(a = 1) = α, the agent’s

belief about how her intermediate outcome affects the final output equals

p(yH | x2 = 1) − p(yH | x2 = 0) = β24[1 + ξ(α, β1, β02, β12)(m − 1)], (72)

where ξ(α, β1, β02, β12) =
β1(1−β1)β2

12
(β12+αβ02)(1−β12−αβ02) ∈ (0, 1). Note that under the objective model, the

value in (72) would be equal to β24 and therefore vanish as the project size m becomes large.

Thus, under the subjective model, the agent overestimates the importance of her intermediate

outcome for the output. The reason is that a high outcome indicates a positive common shock,

which also increases the chance of high intermediate outcomes for all other agents. Under

R the agent falsely attributes the corresponding increase in the probability of a high output

yH to the significance of her intermediate outcome x2. We show below that her perception of

the significance of her intermediate outcome decreases in team size, but converges against a

positive constant for m → ∞. Thus, the agent maintains a certain belief in the importance of

her effort even when her true impact on the final output vanishes.

When R is the subjective model of all agents, the principal’s profit from implementing high

effort at team size m with the optimal incentive scheme is given by

(B + D)
(
mθȳH −

m2c
B

1
1 + ξ(1, β1, β02, β12)(m − 1)

)
− mw̄. (73)

From this we can derive the optimal project size m[1]
R

(c) at cost c. The profit from implementing

low effort from m agents remains the same as under the objective model. Proposition 9 then

follows from a comparison of the profit levels in (71) and (73).

Mathematical Details. We fit the agent’s subjective model R to the probability distribution,

taking α and αo as given. First, we calculate the probabilities that there is a common shock,
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given that x2 = 1 and x2 = 0, respectively. We get

p(x1 = 1 | x2 = 1) =
β1β12 + αβ1β02

β1β12 + αβ02
, (74)

p(x1 = 1 | x2 = 0) =
β1(1 − β12 − αβ02)
1 − β1β12 − αβ02

. (75)

The agent’s subjective probability of a high output yH after a high intermediate outcome x2 = 1

is then given by

p(yH | x2 = 1) =
β1β12 + αβ1β02

β1β12 + αβ02

1 +

m−1∑
k=0

(
m − 1

k

)
(β12 + αβ02)k(1 − β12 − αβ02)m−1−kk

 β24

+

(
1 −

β1β12 + αβ1β02

β1β12 + αβ02

) 1 +

m−1∑
k=0

(
m − 1

k

)
(αβ02)k(1 − αβ02)m−1−kk

 β24. (76)

Using
(

m
k

)
pk(1 − p)m−kk = mp we get

p(yH | x2 = 1) = β24(1 + αoβ02(m − 1)) +
β1β12 + αβ1β02

β1β12 + αβ02
β24β12(m − 1). (77)

Similarly, we get

p(yH | x2 = 0) = β24α
oβ02(m − 1) +

β1(1 − β12 − αβ02)
1 − β1β12 − αβ02

β24β12(m − 1). (78)

From equations (77) and (78) we can then derive p(yH | x2 = 1) − p(yH | x2 = 0) and the

incentive compatibility constraint. From this IC we can derive that if the principal wishes to

implement high effort from m agents, then the optimal incentive scheme is

w(yH) = w̄ +
cm

B[1 + ξ(1, β1, β02, β12)(m − 1)]
and w(yL) = w̄. (79)

From this the principal’s profit in equation (73) follows. Note that β1β12 ≥
1
2 implies that

ξ(α, β1, β02, β12) is maximal at α = 1. Thus, the principal cannot gain by implementing high

effort with probability α ∈ (0, 1).

Finally, we show that ξ(α, β1, β02, β12) < 1 for all admissible values α, β1, β02, β12. This

inequality is identical to β1β12(1 − β12) + αβ02(1 − 2β1β12 − αβ02) > 0. Since 1 > β02 + β12 and

α ≤ 1, this inequality is implied by β1β12(1− β12)− β1β12β02 = β1β12(1− β02 − β12) > 0, which

implies the statement above.
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